References

1. Troeh, F. R., J. A. Hobbs, and R. L. Donahue. 1991. Soil and Water Conservation. Englewood Cliffs, NJ: Prentice-Hall.

2. Golubev, G. N. 1982. Soil erosion and agriculture in the world: an assessment and hydrological implications. Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield. ed. Walling, D. E., IAHS Publ. No. 137, pp. 261— 268, IAHS press, Wellingford.

3. Brown, L. R. 1984. Conserving soils. State of the World, 1984. ed. Brown, L. R., pp. 53-75. New York: Norton.

4. Walling, D. E., and T. A. Quine, 1992. The use of Caesium-137 measurements in soil erosion surveys. Erosion and Sediment Transport Monitoring Programmes in River Basins. Proceeding of the Oslo Symposium, IAHS Publ. No. 21Q, pp. 143-152, IAHS press, Wellingford.

5. Walling, D. E., and W. Webb. 1983. Patterns of sediment yield. Background to Palaeohydrology. ed. Gregory, K. J., pp. 69-1QQ. Chichester: Wiley.

6. Larson, W. E., M. J. Lindstrom, and T. E. Schumacher. 1997. The role of severe storms in soil erosion: A problem needing consideration. J. Soil Water Conserv. 52(2): 9Q-95.

7. Chepil, W. S. 1957. Dust bowl: Causes and effects. J. Soil Water Conserv. 12:108111.

8. Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. London: Chapman and Hall.

9. Chepil, W. S. 1945. Dynamics of wind erosion. III. Transport capacity of the wind. SoilSci. 61:331-340.

10. Ellison, W. D. 1947. Soil erosion studies—Part I. Agric. Eng. 28(4):145-146.

11. Ellison, W. D. 1947. Soil erosion studies—Part II. Agric. Eng. 28(5):197-201.

12. Laws, J. O., and D. A. Parsons. 1943. The relationship of raindrop size to intensity. Trans. Am. Geophys. Union 24:452-460.

13. Hudson, N. W. 1963. Raindrop size distribution in high intensity storms. Rhod. J. Agric. Res. 1:6-11.

14. Laws, J. O. 1941. Measurements of the fall-velocity of waterdrops and raindrops. Trans. Am. Geophys. Union 22:709-721.

15. Sharma, P. P., and S. C. Gupta. 1989. Sand detachment by single raindrops of varying kinetic energy and momentum. Soil Sci. Soc. Am. J. 45:1031-1034.

16. Palmer, R. S. 1965. Waterdrop impact forces. Trans. ASAE8:69-70, 72.

17. Mutchler, C. K., and R. A. Young. 1975. Soil detachment by raindrops. Proceeding's of the Sediment Yield Workshop, Rept. ARS-S-40, pp. 113-117. Oxford MS: US. Department of Agriculture.

18. Torri, D., and M. Sfalanga. 1984. Some problems on soil erosion modelling. Proceedings of the Workshop on Prediction of Agricultural Non-point Source Pollution: Model Selection and Application. pp. B1-B10, Venezia: University of Padua.

19. Young, R. A., and J. L. Wiersma. 1973. The role of rainfall impact on soil detachment and transport. WaterResour. Res. 9:1629-1636.

20. Foster, G. R. 1982. Modeling the erosion process. Hydrologic Modeling of Small Watershed. ed. Haan, C. T., ASAE Monograph No. 5, pp. 297-379. St. Joseph, MI: American Society of Agricultural Engineers.

21. Sharma, P. P. 1996. Interrill erosion. Soil Erosion, Conservation, and Rehabilitation, ed. M. Agassi, pp. 125-152. New York: Marcel Dekker.

22. Horton, R. E. 1945. Erosional development of streams and their drainage basins: A hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56:275370.

23. Chu, S. T. 1978. Infiltration during an unsteady rain. Water Resour. Res. 14(3):461-466.

24. Agnese, C., and V. Bagarello. 1997. Describing rate variability of storm events for infiltration prediction. Trans. ASAE 40(1):61-70.

25. Stone, J., K. G. Renard, and L. J. Lane. 1996. Runoff estimation on agricultural fields. Soil Erosion, Conservation, and Rehabilitation. ed. Agassi M., pp. 203-238. New York: Marcel Dekker.

26. Moss, A. J. 1988. Effects of flow-velocity variation of rain-driven transportation and the role of rain impact in the movement of solids. Aust. J. Soil Res. 26:443-450.

27. Kinnell, P. I. A. 1990. The mechanics of raindrop induced flow transport. Aus. J. Soil Res. 28:497-516.

28. Kinnell, P. I. A. 1991. The effect of flow depth on sediment transport induced by rain-drops impacting shallow flows. Trans. ASAE 34:161-168.

29. Morgan, R. P. C. 1986. Soil Erosion and Conservation. London: Longman.

30. Grissinger, E. H. 1996. Rill and gullies erosion. Soil Erosion, Conservation, and Rehabilitation. ed. Agassi, M., pp. 153-167. New York: Marcel Dekker.

31. Merritt, E. 1984. The identification of four stages during microrill development. Earth Surf. Process. Landforms 9:493-496.

32. Meyer, L. D. 1975. Effect of rate and canopy on rill erosion. Trans. ASAE 18:905911.

33. Savat, J., and J. De Ploey. 1982. Sheet wash and rill development by surface flow. Badland Geomorphology and Piping. eds. Bryan, R. B., and A. Yair, pp. 113-126. Norwich: Geobooks.

34. Rauws, G. 1987. The initiation of rills on plane beds of non-cohesive sediments. Rill Erosion Catena Suppl. 8, ed. Bryan , R. B., pp. 107- 118.

35. Cai, Q., and G. Wang. 1993. Rill initiation and erosion on hillslopes in the hilly loess region, western Shanxi Province. Int. J. Sediment Res. 8(3):21-32.

36. Savat, J. 1979. Laboratory experiments on erosion and deposition of loess by laminar sheet flow and turbulent rill flow. Colloque surl'Érosion Agricole des Sols en Milieu Tempéré Non-MediterranÉen, ed. Vogt, H., and T. Vogt, pp. 139-143. Strasbourg: University Louis Pasteur.

37. Boon, W., and J. Savat. 1981. A nomogram for the prediction of rill erosion. Soil Conservation: Problems and Prospects, ed. Morgan, R. P. C., pp. 303-319. London: Wiley.

38. Gilley, J. E., E. R. Kottwitz, and J. R. Simanton. 1990. Hydraulic characteristics of rills. Trans. ASAE 33(6):1900-1906.

39. Foster, G. R., L. F. Hugghins, and L. D. Meyer. 1984. A laboratory study of rill hydraulics: I. Velocity relationships. Trans. ASAE 21:790-796.

40. Foster, G. R., L. F. Hugghins, and L. D. Meyer. 1984. A laboratory study of rill hydraulics: II. Shear stress relationships. Trans. ASAE 21:797-804.

41. Poesen, J. 1987. Transport of rock fragments by rill flow: A field study. Catena Supplement 8: Rill Erosion. ed. Bryan, R. B., pp. 35-54.

42. Meyer, L. D. 1964. Mechanics of soil erosion by rainfall and runoff as influenced by slope length, slope steepness and particle size. Ph.D. Thesis, W. Lafayette, IN: Purdue University.

43. Foster, G. R., W. R., Osterkamp, L. J. Lane, and D. W. Hunt. 1982. An erosion equation derived from basic erosion principles. Trans. ASAE 19(4):678- 682.

44. Knisel, W. G. 1980. CREAMS: A Field-Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. Conservation Research Report No. 26. Washington, DC: U.S. Department of Agriculture Science and Education Administration.

45. Rose, C. W., J. R., Williams, G. C. Sander, and D. A. Barry, 1983. A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element. SoilSci. Soc. Am. J., 47: 991-995.

46. Meyer, L. D., G. R. Foster, and S. Nikolov. 1975. Effect of flow rate and canopy on rill erosion. Trans. ASAE 18(6):905-911.

47. Elliot, W. J., and J. M. Laflen. 1993. A process-based rill erosion model. Trans. ASAE 36(1):65-72.

48. Kohl, K. D. 1988. Mechanics of rill headcutting. Ph.D. Dissertation Ames, IA: Iowa State University.

49. Brown, L. C., G. R. Foster, and D. B. Beasley. 1989. Rill erosion as affected by incorporated crop residue and seasonal consolidation. Trans. ASAE 32(6):1967-1978.

50. Young, R. A., and C. A. Onstad. 1982. Erosion characteristics of three northwestern soils. Trans. ASAE 19(1):367-371.

51. Kemper, W. D., and R. C. Rosenau, 1984. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 48(5):1001-1006.

52. Foster, G. R., and L. D. Meyer. 1972. A closed-form soil erosion equation for upland areas. Sedimentation, Symposium to Honor Prof. H.A. Einstein, ed. Shen, H. W., pp. 12.1-12.19. Fort Collins: Colorado State University.

53. Finkner, S. C., M. A., Nearing, G. R. Foster, and J. E. Gilley. 1989. A simplified equation for modeling sediment transport capacity. Trans. ASAE 32:1545-1550.

54. Mitchell, J. K., and G. D. Bubenzer. 1980. Soil loss estimation. Soil Erosion. eds. Kirkby M. J., and R. P. C., Morgan. pp. 17-62. Chichester: Wiley.

55. Schumm, S. A. 1956. Evolution of drainage systems and slopes in badlands in Perth Amboy, New Jersey. Office of Naval Research Tech. Rept. 8, Columbia University.

56. Haigh, M. J. 1990. Evolution of an anthropogenic desert gully system. Erosion, Transport and Deposition Processes, Proceedings of the Jerusalem Workshop, IAHS Publ. No. 189, pp. 65-77, IAHS press, Wellingford.

57. Wischmeier, W. H., and D. D. Smith. 1978. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning, Agriculture Handbook No. 537. Washington, D.C.: U.S. Department of Agriculture.

58. Carter, C. E., and D. A. Parson. 1967. Field tests on the Coshocton-type wheel runoff sampler, Trans. ASAE 10(1):133-135.

59. Bazzoffi, P. 1993. Fagna-type hydrological unit for runoff measurements and sampling in experimental plot trials. Soil Technol. 6:251-259.

60. Bagarello, V., and V. Ferro. 1998. Calibrating storage tanks for plot soil erosion measurements. Earth Surf. Process. Landforms. 23.

61. Chow, V. T. 1959. Open-Channel Hydraulics, New York: McGraw Hill.

62. Ferro, V. 1992. Flow measurement with rectangular free overfall, Proc. ASCE118 (IR6):956-964.

63. Montuori, C. 1984. Sviluppi recenti nello studio delle correnti supercritiche. Proceedings of Workshop "Idraulica del Territorio Montano" in Honor of Prof. A. Ghetti, pp. 205-256. Istituto di Idraulica "G. Poleni" dell'Universita di Padova. Padova: Cortine.

64. Ritchie, J. C., and J. R. McHenry. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 19:215-233.

65. Walling, D. E., and T. A. Quine. 1991. Use of 137Cs measurements to investigate soil erosion on arable fields in the UK: Potential applications and limitations, J. Soil Sci. 42:147-165.

66. Meyer, L. D., and W. C. Harmon. 1979. Multiple-intensity rainfall simulator for erosion research on row sideslopes. Trans. ASAE 22(1):100-103.

67. Torri, D., and C. Zanchi. 1991. I simulatori di pioggia: Caratteristiche ed uti-lizzazioni. La Gestione delle Aree Collinari Argillose e Sabbiose, Edizioni delle Autonomie SRL, pp. 121-127 (in Italian).

68. Leone, A., andM. Pica. 1993. Caratteristiche dinamiche esimulazione dellepiogge, Parte prima: Fondamenti teorici. Riv. Ing. Agrar. 3:167-175 (in Italian).

69. Leone, A., andM. Pica. 1993. Caratteristiche dinamiche esimulazione delle piogge, Parte seconda: Procedure di prova e proposta di un simulatore. Riv. Ing. Agrar. 3:176-183 (in Italian).

70. Pica, M. 1994. Dynamic characteristics of rainfall. Idrotecnica 2:59-67.

71. Gunn, R., and G. D. Kinzer. 1948. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 6:243-248.

72. Ulbrich, C. W. 1983. Natural variations in the analytical form of the raindrop size distribution. J. Climatol. Appl. Meteorol. 22:1764-1775.

73. Tossell, R. W., G. J. Wall, R. P. Rudra, W. T. Dickinson, and P. H. Groenevelt. 1990. The Guelph rainfall simulator II: Part 2, A comparison of natural and simulated rainfall characteristics, Can. Agric. Eng. 32:215-223.

74. Moore, I. D., M. C. Hirschi, and B. J. Barfield. 1983. Kentucky rainfall simulator. Trans. ASAE 26(4):1085-1089.

75. Kamphorst, A. 1987. A small rainfall simulator for the determination of soil erodi-bility. Neth. J. Agric. Sci. 35:407-415.

76. Morgan, R. P. C. 1993. Soil erosion assessment. ed. Morgan, R. P. C. Proceedings of the Workshop on "Soil Erosion in Semi-arid Mediterranean areas," pp. 3-17. Taormina: C.N.R.-Progetto Finalizzato RAISA, ESSC and CSEI.

77. De Ploey, J. 1989. Soil erosion map of western Europe. Cremlingen-Destedt: Catena Verlag.

78. Ventura, S. J., N. R. Chrisman, K. Connors, R. F. Gurda, and R. W. Martin. 1988. A land information system for soil erosion control planning. J. Soil Water Conserv. 43(3):230-233.

79. Bocco, G., and C. R. Valenzuela. 1993. Integrating satellite-remote sensing and geographic information systems technologies in gully erosion research. Remote Sensing Rev. 7:233-240.

80. Risse, L. M., M. A. Nearing, A. D. Nicks, and J. M. Laflen. 1993. Error assessment in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J. 57:825-833.

81. Renard, K. G., G. R. Foster, G. A., Weesies, and J. P. Porter. 1991. RUSLE— Revised Universal Soil Loss Equation. J. Soil Water Conserv. 46(1):30-33.

82. Bagarello, V., and F. D'Asaro. 1994. Estimating single storm erosion index. Trans. ASAE 37(3): 785-791.

83. Aronica, G., and V. Ferro. 1997. Rainfall erosivity over Calabrian region. J. Hy-drolog. Sci. 42(1):35-48.

84. Banasich, K., and D. Gorski. 1994. Rainfall erosivity for south-east Poland. Conserving Soil Resources. European Perspectives. ed. Rickson, R. J. Lectures in Soil Erosion Control, pp. 201-207. Silsoe College, Cranfield University.

85. Bergsma, E. 1980. Provisional rain-erosivity map of the Netherlands. Assessment of Erosion, eds. De Boodt, M., and D. Gabriels. Chichester, UK: Wiley.

86. Wischmeier, W. H., C. D. Johnson, and B. V. Cross. 1971. A soil erodibility nomograph for farmland and construction sites, J. Soil Water Conserv. 29:189-193.

87. Loch, R. J., and C. J. Rosewell. 1992. Laboratory methods for measurement of soil erodibilities (K factor) for the Universal Soil Loss Equation. Aust. J. Soil Res. 30:233-248.

88. Young, R. A., M. J. M. Romkens, and D. K. McCool. 1990. Temporal variations in soil erodibility. Catena Suppl. 17:41-53.

89. Renard, K. G., G. R. Foster, D. C. Yoder, and D. K. McCool. 1994. RUSLErevisited: Status, questions, answers, and the future. J. Soil Water Conserv. 49(3):213-220.

90. Moore, I. D., and J. P. Wilson. 1992. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. J. Soil Water Conserv. 47(5):423-428.

91. Dissmeyer, G. E., and G. R. Foster. 1981. Estimating the cover-management factor (C) in the Universal Soil Loss Equation for forest conditions, J. Soil Water Conserv. 36:235-240.

92. Renard, K. G., and V. A. Ferreira. 1993. RUSLE model description and database sensitivity. J. Environ. Qual. 22(3):458-466.

93. Williams, J. R. 1975. Sediment yield prediction with universal equation using runoff energy factor. Present and prospective technology for predicting sediment yields and source. Proceedings of Sediment-Yield Workshop. Oxford, MS: U.S. Department of Agriculture Sedimentation Lab, 244-252.

94. Williams, J. R., and H. D. Berndt. 1972. Sediment yield computed with universal equation. Proc. ASCE 98 (HY2):2087-2098.

95. U.S. Department of Agriculture. 1995. Water Erosion Prediction Project (WEPP). NSERL Report No. 10. West Lafayette, IN: National Soil Erosion Research Laboratory.

96. Richards, K. 1993. Sediment delivery and drainage network. Channel Network Hydrology. eds. Beven, K. and M. J. Kirkby, pp. 221-254. Wiley.

97. Bagarello, V., G. Baiamonte, V. Ferro, and G. Giordano. 1993. Evaluating the topographic factors for watershed soil erosion studies. ed. Morgan, R. P. C. Proceedings of Workshop on "Soil Erosion in Semi-arid Mediterranean Areas," pp. 19-35. Taormina: C.N.R.-Progetto Finalizzato RAISA, ESSC and CSEI.

98. Julien, P. Y., andM. Frenette. 1986. Scale effects in predicting soil erosion. Proceedings of "Drainage Basins Sediment Delivery," IAHS Publ. No. 159, pp. 253-259. IAHS Press, Wellingford.

99. Julien, P. Y., and M. Frenette. 1987. Macroscale analysis of upland erosion. J. Hydrolog. Sci. 32(3):347-358.

100. American Society of Civil Engineers. 1975. Sedimentation Engineering. ASCE Manuals and Reports on Engineering Practice, 54.

101. Walling, D. E. 1983. The sediment delivery problem. J. Hydrol. 65:209-237.

102. Ferro, V., and M. Minacapilli. 1995. Sediment delivery processes at basin scale. J. Hydrolog. Sci. 40(6):703-717.

103. Ferro, V. 1997. Further remarks on a distributed approach to sediment delivery. J. Hydrolog. Sci. 42(5):633-647.

104. Campbell, B. L., R. J. Loughran, J. L. Elliott, and D. J. Shelly. 1986. Mapping Drainage Basin Sediment Sources Using Caesium-137. IAHS Publ. No. 159, pp. 437-446.

105. Ritchie, J. C., J. A. Spraberry, and J. R. McHenry. 1974. Estimating soil erosion from redistribution of fallout 137-Cs, Soil Sci. Soc. Am. Proc. 38:137-139.

4.4 Soil Conservation: Erosion Control

D. De Wrachien and G. Chisci In most cases a combination of measures is needed to reduce the effects of the processes that cause erosion and to stimulate land use so that the soil is kept permanently productive. However, it must be emphasized that none of these methods has universal application. In selecting from possible measures, the following issues must be considered [1]:

• Any measure must be suitable for the intended land use and cropping systems.

• The objectives must be relate to rainfall and soil. In high-rainfall areas, a common goal is to lead unavoidable runoff safely off the land using drains and ditches. In semiarid regions the objective is that of slowing down the runoff to nonscouring velocities to encourage infiltration or deposition of silt.

• The inputs, especially of labor, must be affordable and the benefits must be sufficient to justify the inputs.

Anyway, the final choice, among possible conservation procedures, should depend on the social and economic conditions of those involved.

There are so many different measures used in erosion control that some form of grouping is needed to describe them. Mechanical methods encompass all techniques that involve earthmoving, such as digging drains, building banks, and leveling sloping land. Anything else, nowadays, is lumped under agrobiological measures. This is appropriate for large mechanized farms where machines are used to do the earthmoving and this is followed up with improved farming methods. But the division does not suit the concept of erosion control through better land husbandry by means of mechanical protection. Moreover, it becomes artificial when it deals with progressive terracing using grass strips or live hedges. Anyway, for want of better terms, the above-mentioned approach is kept is this section. Measures special for wind erosion control are descibed in Section 4.4.3 of this chapter.

Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook


Post a comment