Reflectance Characteristics of Earths Cover types

The spectral characteristics of the three main earth surface features are discussed below :

Vegetation: The spectral characteristics of vegetation vary with wavelength. Plant pigment in leaves called chlorophyll strongly absorbs radiation in the red and blue wavelengths but reflects green wavelength. The internal structure of healthy leaves acts as diffuse reflector of near infrared wavelengths. Measuring and monitoring the near infrared reflectance is one way that scientists determine how healthy particular vegetation may be.

Water: Majority of the radiation incident upon water is not reflected but is either absorbed or transmitted. Longer visible wavelengths and near infrared radiation is absorbed more by water than by the visible wavelengths. Thus water looks blue or blue green due to stronger reflectance at these shorter wavelengths and darker if viewed at red or near infrared wavelengths. The factors that affect the variability in reflectance of a water body are depth of water, materials within water and surface roughness of water.

Soil: The majority of radiation incident on a soil surface is either reflected or absorbed and little is transmitted. The characteristics of soil that determine its reflectance properties are its moisture content, organic matter content, texture, structure and iron oxide content. The soil curve shows less peak and valley variations. The presence of moisture in soil decreases its reflectance.

By measuring the energy that is reflected by targets on earth's surface over a variety of different wavelengths, we can build up a spectral signature for that object. And by comparing the response pattern of different features we may be able to distinguish between them, which we may not be able to do if we only compare them at one wavelength. For example, Water and Vegetation reflect somewhat similarly in the visible wavelength but not in the infrared.

Was this article helpful?

0 0

Post a comment