The most important commercial product of cellulose degradation is ethanol, which has the potential of filling the national energy and raw material needs. Furthermore, burning bioethanol has the advantage that it does not contribute to green gas emission from the viewpoint of overall carbon cycle. The present technology derives carbon mainly from corn in a two-step process: hydrolysis of starch to sugar followed by fermentation of sugar to ethanol. In the future, starch is perhaps better saved for food or chemical raw material. To make the process competitive against existing sources of energy and raw materials, we must expand the feedstock to include lignocellulosic biomass. Economics play a major role in deciding which process is ultimately commercially viable. To this end, future research must focus on minimizing unfermented residual biomass, especially lignin and hemicellulose. We must attack an old problem systematically with a multipronged approach and with newly discovered tools in biotechnology: genetic engineering, site directed mutagenesis, and metabolic engineering.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment