Conclusions

Fungi are capable of cometabolizing most hydrocarbons. However, only a few fungi are known to grow on hydrocarbons, such as methane, n-hexadecane, toluene, styrene, or phenanthrene, as sole carbon sources. Since various fungi oxidize hydrocarbons, often in a stereoselective manner, some strains have been selected to carry out specific biocatalytic transformations to produce higher-value products. Many fungi transform toxic hydrocarbons to oxidized derivatives and a few strains are able to cleave aromatic rings; thus these fungi have the potential for use, preferably together with bacteria, for the bioremediation of toxic wastes in the environment. Several lines of research on the fungal degradation of hydrocarbons are likely to be productive in the future. These include: (a) Investigating the roles of yeasts and filamentous fungi in transforming naturally occurring hydrocarbons at the concentrations usually found in the environment. (b) Finding additional ways to transform abundant renewable resources, including by-products from agriculture and forestry, into chiral drug precursors and other high-value products. (c) Developing practical combinations of fungi and bacteria that can be used for the large-scale bioremediation of soils contaminated with mixtures of hydrocarbons.

Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook


Post a comment