Current Food Supply And Demand

With the geometric doubling of population and marginally arithmetic doubling of food production, the ideas of Robert

Malthus proposed in 1798 remains as controversial as when they first appeared. Malthus's hypothesis remained an important unanswered question for years after the bicentennial of Malthus's paper. Brown et al. (1999) point out what additional issues complicate the simplistic Malthusian thought are additional constraints of public health and global economy. One major intervening force has been the emergence of new and reemerging infectious diseases, which in the absence of global war have had an equivalent effect in terms of human suffering and death worldwide. Ironically, these epidemics are occurring again in spite of advanced medical technologies and accelerated methods of health care delivery and immunization. To further complicate the issue, the conventional practice of agriculture has not doubled and cannot double the production of plant and animal-based foods, which are still at the mercy of nature and its disasters. Presumably, biotechnology has emerged as a solution, or an option for one, at least for the moment.

Disciplinary crossover of biochemistry, genetics, microbiology, nutritional sciences, engineering, and emergence of biotechnology set the stage for reconsidering the paradigm of agriculture from traditional breeding for food plants (Khachatourians 2002). The strongest impact on agriculture in this area occurred after the discovery of in vitro genetic engineering and the use of transgenic plants. Biotechnology as a new era, 20 years into its development, is showing its positive impacts in production agriculture and new food crops.

It could be said that we still have some distance to travel before a larger contextual effect can be felt. In general there is confidence that judicious and timely applications of modern genetics to plant science will be an important driver of world agriculture. Given the rising number of people it is also understood that abundance of transgenic food plants does not

Table 1 Food production through fungal biotechnology

Amino acids Beverages Dairy products Digestive aids Dough

Ethnic foods (kefir, koji, miso, tempeh, etc.)

Food pigments Food enzymes Mushrooms Organic acids Single-cell protein

Vitamins necessarily translate into abundant supply for people. To feed the world population, we must strive to overcome global deficiencies in food transportation, and storage in many countries as well as its affordability (Khachatourians 2002). Certainly, agricultural biotechnology can provide part of the answer, but global sociopolitical factors, including ethics of farming, farmers, corporate agribusiness, world trade organizations and states, and international treaties and enforcement agencies, will also be influential.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment