Fungal Biotechology In Food Production

Mushroom Growing 4 You

Growing Mushrooms at Home

Get Instant Access

No matter how anecdotal the evidence, even the ancient societies recognized the use of fungal technology, in relationship with their agriculture and food. Knowledge of fungal diversity and distinguishing beneficial fungi for the biotransformation of food ingredients, helped to sustain and extend our food source. In spite of the powerful toxic secondary metabolites of many fungi, humanity survived these fungi and through innovative use of the beneficial micro and macro fungi found particular culinary and other uses of the mushrooms (see: this volume, chapter by Rai).

The importance of the fungi relates to their particular modes of growth and proliferation, production, and secretion of extracellular enzymes, peptides of novel functions (taste, physiological functions, and antimicrobial activity) and secondary metabolites and antibiotics consequential to prevention of infectious microbial growth. The molecular biologists of the day work with a few well-studied fungi, (Table 2) but many others from the 72,000 species wait in line to be studied (Hawksworth 1991).

Through advances in the fungal biotechnology we understand fungal role in the new age of applied molecular biology. As we have a growing base of some 10,000 fungal species in various collections and the public domain literature we have some of the relevant knowledge to cross connect to biotechnology for exploitation of fungi for food and ingredients manufactured for human benefit. The knowledge base in mycology is in a good position to lead the new biotechnology of food.

Table 2 Representative fungal species in food biotechnology

Genus species/synonym

Genus species/synonym

Yeasts Candida Maltosa Antarctica Pseudotropicalis Shehatae utilis

Debaryomyces hansenii Kluyveromyces lactis marxianus var. marxianus Pachysolen tannophilus Phaffia rhodozyme Pichia stipitis Saccharomyces bayanus carlsbergensis cerevissiae exiguous lipolytica rosei rouxii sake uvarum Yarrowia lipolytica

Filamentous fungi

Aspergillus nidulans niger oryzae Mucor hiemalus miehei pusillus Penicillium album camemberti caseicolum roquefortii Rhizopus arrhizus cohnii delemar niveus oligosporus oryzae Edible mushrooms Agaricus bisporus Agaricus campus Lentinus edodes Pholiota nameke Pleurotus ostreatus Volvariella volvacea

Changes in the functional features of the starting materials leading to food products and processes are the other side to the fungal biotechnology. It is expected that efforts in the public and private sector research establishments should provide new inputs for food production. On the output side, it is expected that increased productivity, higher value added, improved quality and shelf life, and spoilage protection will impact market situation. These products and processes for food crops and agricultural practice are not only challenging for the scientific community interested in mycology but also for public health and commerce. From various estimates, the values of sales of mycology-based products can run into tens of billion of dollars, projected by this decade, certainly not an insignificant figure.


Whether through traditional or present day biotechnological routes, fundamental applications of fungi have made a substantial impact on our foods (Hui and Khachatourians

1995; Khachatourians and Arora 2001; 2002). Historically, applications of mycology in agriculture and food have been exploited by many countries and ethnic groups and are now being enhanced by several tools and concepts of biotechnology (Hui and Khachatourians 1995; Pointing and Hyde 2001; Singh and Aneja 1999). In recent years much are emerging in the developed countries that serves as new learning opportunities in application of fungal biotechnology for the food and environment. As it can be seen from chapters of this book, there are more rapid advances and new understandings of the processes and new products aided or deterred by fungal biotechnology. In general, all areas of food technology, whether pre- or postharvest food crop management, transformation and value differentiation of commodities, increased production efficiency, increased value-in-use of animal and plant food and nonfood markets will be affected by fungal biotechnology.

As evident from the first section of this compendium, a large proportion of the innovations in food biotechnology come from the renewed assessment of fungal physiology, biochemistry and genetics in order to determine methods and options for manipulations at the molecular level. Outside the natural sciences, agricultural biotechnology of today also requires the convergence of several disciplines from production strategies, process engineering, commerce, and international law. Indeed it is the entire process of science, investment, inventions, and innovations that are the interdisciplinary and transdisciplinary characteristics of the new biotechnology (Phillips and Khachatourians 2001).

Advances in ingredient subdisciplines of mycology as in the past will remain the drivers of applied agricultural research. With new interests there will be major investment focused on generating discoveries and their applications towards both conventional and biotechnology oriented useful products and processes or services.

In the sections to follow we will present certain highlights of basic and applied mycology that are exciting developments and which impact the cross connection with biotechnology for applications to agri-food (Rajak 2000). Needless to say specific developments in fields ancillary to mycology should continue to be of significant impact on the new applied mycology and biotechnology products and processes.

Was this article helpful?

0 0
Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook

Post a comment