Mushroom Growing 4 You

Growing Mushrooms at Home

Get Instant Access

Akamatsu Y, Ma DB, Higuchi T, and Shimada M (1990). A novel enzymatic decarboxylation of oxalic-acid by the lignin peroxidase system of white-rot fungus Phanerochaete Chrysosporium. FEBS Lett 269:261-263.

Akhtar M, Scott GM, Swaney RE, and Shipley DF (2000). Biomechanical pulping: a mill-scale evaluation. Resour Conserv Recycl 28:241 -252.

Ander P and Eriksson K-EL (1975). Influence of carbohydrates on lignin degradation by the whiterot fungus Sporotrichum pulverulentum. Sven Papperstidn 78:643-652.

Ander P, Mishra C, Farrel R, and Eriksson KE (1990). Redox interactions in lignin degradation: interaction between laccase, different peroxidases and cellobiose:quinone oxidoreductase. J Biotechnol 13:189-198.

Archibald FS and Fridovich I (1982). The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214:452-463.

Argyropoulos DS and Menachem SB (1997). Lignin. In: Eriksson K-EL ed. Advances in Biochemical Engineering/ Biotechnology. Berlin: Springer Verlag. pp 127-158.

Arora DS and Gill PK (2001). Effects of various media and supplements on laccase production by some white rot fungi. Bioresour Technol 77:89-91.

Bao WL, Fukushima Y, Jensen KA, Moen MA, and Hammel KE

(1994). Oxidative-degradation of nonphenolic lignin during lipid-peroxidation by fungal manganese peroxidase. FEBS Lett 354:297-300.

Barr DP and Aust SD (1994). Conversion of lignin peroxidase compound III to active enzyme by cation radicals. Arch Biochem Biophys 312:511-515.

Barr DP, Shah MM, Grover TA and Aust SD (1992). Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 298:480-485.

Blanchette RA (1984). Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48:647-653.

Blanchette RA (1991). Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381-398.

Blanchette RA (1995). Degradation of the lignocellulose complex in wood. Can J Bot Rev Can Bot 73:S999-S1010.

Blanchette RA (2000). A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46:189-204.

Blanchette RA, Otjen L, and Carlson MC (1987). Lignin distribution in cell walls of birch wood decay by white rot basidiomycetes. Phytopathology 77:684-690.

Blanchette RA, Abad AR, Farrell RL, and Leathers TD (1989). Detection of lignin peroxidase and xylanase by immuno-cytochemical labeling in wood decayed by basidiomycetes. Appl Environ Microbiol 55:1457-1465.

Bonnarme P and Jefferies TW (1990). Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin degrading white rot fungi. Appl Environ Microbiol 56:210-217.

Bonnarme P, Perez J, and Jeffries TW (1991). Regulation of ligninase production in white-rot fungi. ACS Symp Ser 460:200-206.

Boominathan K and Reddy A (1992). Fungal degradation of lignin: biotechnological applications. Handb Appl Mycol: 763-822.

Bourbonnais R and Paice MG (1989). Oxidative enzymes from the lignin-degrading fungus Pleurotus sajor-caju. In: Lewis NG and Paice MG, eds. Biogenesis and Biodegradation of Plant Cell Polymers. ACS Symposium Series, pp 472-481.

Bourbonnais R, Paice MG, Reid ID, Lanthier P, and Yaguchi M

(1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethyl-benzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876-1880.

Boyle CD, Kropp BR, and Reid ID (1992). Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58:3217-3224.

Breen A and Singleton FL (1999). Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252-258.

Buswell JA and Odier O (1987). Lignin biodegradation. Crit Rev Biotechnol 6:1-60.

Buswell JA, Cai YJ, Chang ST, Peberdy JF, Fu SY, and Yu HS

(1996). Lignocellulolytic enzyme profiles of edible mushroom fungi. World J Microbiol Biotechnol 12:537-542.

Cai D and Tien M (1989). On the reactions of lignin peroxidase compound-III (Isozyme-H8). Biochem Biophys Res Commun 162:464 -469.

Cai DY and Tien M (1992). Kinetic-studies on the formation and decomposition of compound-ii and compound-III—reactions of lignin peroxidase with H2O2. J Biol Chem 267:11149-11155.

Call HP and Mucke I (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(R)-process). J Biotechnol 53:163-202.

Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, and Martinez AT (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324-10330.

Candeias LP and Harvey PJ (1995). Lifetime and reactivity of the veratryl alcohol radical-cation—implications for lignin peroxidase catalysis. J Biol Chem 270:16745-16748.

Chung N and Aust SD (1995). Inactivation of lignin peroxidase by hydrogen-peroxide during the oxidation of phenols. Arch Biochem Biophys 316:851-855.

Cohen R and Hadar Y (2001). The roles of fungi in agricultural waste conversion. In: Gadd GM ed. Fungi in Bioremediation. Cambridge: Cambridge University Press. pp 305-334.

Cohen R, Hadar Y, and Yarden O (2001). Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3:312-322.

Collins PJ, Kotterman MJJ, Field JA, and Dobson ADW (1996). Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563-4567.

CostaFerreira M, Silva A, and Duarte JC (1996). Synthetic lignin degradation and peroxidase formation by Phanerochaete magnoliae. Biotechnol Appl Biochem 23:37-40.

Couto SR, Longo MA, Cameselle C, and Sanroman A (1999). Ligninolytic enzymes from corncob cultures of Phanerochaete chrysosporium under semi-solid-state conditions. Acta Biotechnol 19:17-25.

Cowling EB and Merrill W (1966). Nitrogen in wood and its role in wood deterioration. Can J Bot 44:1539-1554.

Crawford RL (1981). Lignin Biodegradation and Transformation. New York: John Wiley & Sons, Inc.

Davis MF, Schroeder HR, and Maciel GE (1994). Solid-state C-13 nuclear magnetic resonance studies of wood decay. 1. White-rot decay of colorado blue spruce. Holzforschung 48:99-105.

Dodson PJ, Evans CS, Harvey PJ, and Palmer JM (1987). Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyzes Ca-Cß cleavage in a lignin model compound. FEMS Microbiol Lett 42:17-22.

D'Souza TM, Merrit CS, and Reddy CA (1999). Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307-5313.

Eggert C, Temp U, Dean JF, and Eriksson KE (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144-148.

Eggert C, Temp U, and Eriksson KE (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89-92.

Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y, and Kuwahara M (1999). Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol Lett 180:205-211.

Eriksson K-E, Blanchette RA, and Ander P (1990). Microbial and Enzymatic Degradation of Wood and Wood Components. New York: Springer.

Fahraeus G and Reinhammar B (1967). Large-scale production and purification of laccase from cultures of Polyporus versicolor and some properties of laccase. Acta Chem Scand 21:2367-2378.

Farrell RL, Murtagh KE, Tien M, Mozuch MD, and Kirk TK (1989). Physical and enzymatic-properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322-329.

Flournoy DS, Paul JA, Kirk TK, and Highley TL (1993). Changes in the size and volume of pores in sweetgum wood during simultaneous rot by Phanerochaete chrysosporium burds. Holzforschung 47:297-301.

Forrester IT, Grabski AC, Mishra C, Kelley BD, Strickland WN, Leatham GF, and Burgess RR (1990). Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate. Appl Microbiol Biotechnol 33:359-365.

Fukuzumi T (1987). Ligninolytic enzymes of Pleurotus sajor-caju. Colloq INRA 40:137-142.

Galliano H, Gas G, Seris JL, and Boudet AM (1991). Lignin degradation by Rigidoporus lignosus involves synergistic action of 2 oxidizing enzymes—Mn peroxidase and laccase. Enzyme Microb Technol 13:478-482.

Gamble GR, Sethuraman A, Akin DE, and Eriksson KEL (1994). Biodegradation of lignocellulose in bermuda grass by white-rot fungi analyzed by solid-state C-13 nuclear-magnetic-resonance. Appl Environ Microbiol 60:3138-3144.

Gierer J, Yang EQ, and Reitberger T (1994). On the significance of the superoxide radical in oxidative delignification, studied with 4-T-butylsyringol and 4-T-butylguaiacol. 4. The mechanism of aromatic ring-opening. Holzforschung 48:405 -414.

Gilbertson RL (1980). Wood-rotting fungi of North America. Mycologia 72:1-49.

Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, and Gold MH (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidio-mycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077-1083.

Gold MH and Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605-622.

Gold MH, Wariishi H, and Valli K (1989). Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp Ser 389:127-140.

Golovleva LA, Leontievsky AA, Maltseva OV, and Myasoedova NM (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8/18: biosynthesis, purification and properties. J Biotechnol 30:71 -77.

Goodwin DC, Aust SD, and Grover TA (1995). Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry 34:5060-5065.

Hammel KE, Kalyanaraman B, and Kirk TK (1986). Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p ]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948-16952.

Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, and Pease EA (1993). Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274-12281.

Hammel KE, Kapich AN, Jensen KA, Jr, and Ryan ZC (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445-453.

Harvey PJ and Palmer JM (1990). Oxidation of phenolic compounds by ligninase. J Biotechnol 13:169-180.

Harvey PJ, Schoemaker HE, and Palmer JM (1986). Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195:242-246.

Hatakka A (1994). Lignin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol Rev 13:125-135.

Hatakka A and Uusi-Rauva A (1983). Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Eur J Appl Microbiol Biotechnol 17:235-242.

Hatakka A, Buswell JA, Pirhonen TI, and Uusi-Rauva A (1983). Degradation of 14C-labeled lignins by white-rot fungi. In: Higuchi T, Chang H-M, Kirk TK eds. Recent Advances in Lignin Biodegradation. Tokyo: UNI Publ. Co. Ltd. pp 176-187.

Hatakka AI, Niemenmaa OV, Lankinen VP, and Lundell TK (1992). Production and characterization of lignin peroxidases and laccase from the white-rot fungi Phlebia radiata and Phlebia (Merulius) tremellosa. In: Kennedy JF, Phillips GO, Williams PA eds. Lignocellulosics: Science, Technology, Development and Use. Chichester: Ellis Horwood Ltd. pp 45-53.

Hatakka A, Vares T, Niemenmaa O, and Lundell T (1993). Production and characterization of lignin-modifying enzymes from selected white-rot fungi. In: Duarte JC, Ferreira MC, and Ander P, eds. Proceedings of FEMS Symposium on Lignin Biodegradation and Transformation: Biotechnical Applications, Lisboa, Portugal.

ten Have R and Teunissen PJ (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397-3413.

ten Have R, Hartmans S, Teunissen PJM, and Field JA (1998a). Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett 422:391 -394.

ten Have R, Rietjens IMCM, Hartmans S, Swarts HJ, and Field JA (1998b). Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase. FEBS Lett 430:390-392.

ten Have R, Franssen MCR, and Field JA (2000). Lignin peroxidase initiates O-2-dependent self-propagating chemical reactions which accelerate the consumption of 1-(3'4'-dimethoxy-phenyl)propene. Biochem J 347:585-591.

Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, and Szewzyk U (1998a). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43-50.

Heinfling A, Ruiz-Duenas FJ, Martinez MJ, Bergbauer M, Szewzyk U, and Martinez AT (1998b). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141-146.

Henriksson G, Ander P, Pettersson B, and Pettersson G (1995). Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete-chrysosporium as a wood degrading enzyme—studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42:790-796.

Henriksson G, Johansson G, and Pettersson G (2000). A critical review of cellobiose dehydrogenases. J Biotechnol 78:93-113.

Higuchi T (1990). Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23-63.

Hilden L, Johansson G, Pettersson G, Li JB, Ljungquist P, and Henriksson G (2000). Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation. FEBS Lett 477:79-83.

Hofrichter M, Scheibner K, Schneegass I, and Fritsche W (1998). Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399-404.

Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, and Hatakka A (1999). Production of manganese peroxidase and organic acids and mineralization of C-14-labelled lignin (C-14-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864-1870.

Jeffries TW, Choi S, and Kirk TK (1981). Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290 -296.

Jensen KA, Bao WL, Kawai S, Srebotnik E, and Hammel KE (1996). Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl Environ Microbiol 62:3679-3686.

Johansson T and Nyman O (1987). A manganese(II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. Acta Chem Scand B41:762-765.

Kamra DN and Zadrazil F (1986). Influence of gaseous phase, light and substrate pre treatment on fruit-body formation, lignin degradation and in vitro digestibility of wheat straw fermented with Pleurotus spp. Agric Wastes 18:1-17.

Kapich A, Hofrichter M, Vares T, and Hatakka A (1999a). Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and C-14-labeled lignins. Biochem Biophys Res Commun 259:212-219.

Kapich AN, Jensen KA, and Hammel KE (1999b). Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115-119.

Kawai S, Umezawa T, and Higuchi T (1988). Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99-110.

Kawai S, Jensen KA, Bao W, and Hammel KE (1995). New polymeric model substrates for the study of microbial ligninolysis. Appl Environ Microbiol 61:3407 - 3414.

Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, and Kirk TK (1990). Comparison of lignin peroxidase, horseradish-peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475-480.

Khindaria A, Yamazaki I, and Aust SD (1996). Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35:6418-6424.

Kimura Y, Asada Y, Oka T, and Kuwahara M (1991). Molecular analysis of a Bjerkander adusta lignin peroxidase gene. Appl Microbiol Biotechnol 35:510-514.

Kirk TK and Cullen D (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young AR, Akhtar M eds. Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: John Wiley & Sons, Inc. pp 273-307.

Kirk TK and Farrell RL (1987). Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41:465-505.

Kirk TK, Connors WJ, and Zeikus JG (1976). Requirements for a growth substrate during lignin decomposition by two wood rotting fungi. Appl Environ Microbiol 32:192-194.

Kuan IC and Tien M (1993). Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242-1246.

Kutsuki H and Gold MH (1982). Generation of hydroxyl radicals and its involvment in lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun 109:320-327.

Leatham G and Kirk TK (1983). Regulation of ligninolytic activity by nutrient nitrogen in white rot basidiomycetes. FEMS Microbiol Lett 16:65-67.

Leatham GF and Stahmann MA (1984). Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 125:147-157.

Leisola MS, Kozulic B, Meussdoerffer F, and Fiechter A (1987). Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262:419-424.

Leontievsky AA, Myasoedova NM, and Golovleva LA (1994). Production of ligninolytic enzymes of the white-rot fungus Panus tigrinus. J Biotechnol 32:299-307.

Ma DB, Hattori T, Akamatsu Y, Adachi M, and Shimada M (1992). Kinetic-analysis of the noncompetitive inhibition of the lignin-peroxidase-catalyzed reaction by oxalic-acid. Biosci Biotechnol Biochem 56:1378-1381.

Majcherczyk A, Johannes C, and Huttermann A (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335-341.

Majcherczyk A, Johannes C, and Huttermann A (1999). Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphuric acid) cation radical and dication. Appl Microbiol Biotechnol 51:267-276.

Makela M, Galkin S, Hatakka A, and Lundell T (2002). Production of organic acid and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30:542-549.

Mester T and Field JA (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412-15417.

Mester T, Dejong E, and Field JA (1995). Manganese regulation of veratryl alcohol in white-rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol 61:1881-1887.

Moen MA and Hammel KE (1994). Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956-1961.

Munoz C, Guillen F, Martinez AT, and Martinez MJ (1997). Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol 63:2166-2174.

Nakamura Y, Sungusia MG, Sawada T, and Kuwahara M (1999). Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J Biosci Bioeng 88:41 -47.

Nicole M, Chamberland H, Rioux D, Xixuan X, Blanchette RA, Geiger JP, and Ouellette GB (1995). Wood degradation by Phellinus-noxius—ultrastructure and cytochemistry. Can J Microbiol 41:253-265.

Niku-Paavola ML, Karhunen E, Salola P, and Raunio V (1988). Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877-884.

Novotny C, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, and Sasek V (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850-853.

Paszczynski A, Huynh V, and Crawford R (1986). Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750-765.

Perez J and Jeffries TW (1990). Mineralization of C-14 ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl Environ Microbiol 56:1806-1812.

Perez J and Jeffries TW (1992). Roles of manganese and organic-acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol 58:2402-2409.

Perie FH and Gold MH (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240-2245.

Perie FH, Reddy GV, Blackburn NJ, and Gold MH (1998). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys 353:349-355.

Reid ID and Deschamps AM (1991). Nutritional regulation of synthetic lignin (DHP) degradation by the selective white-rot fungus Phlebia-(Merulius)-tremellosa—effects of glucose and other cosubstrates. Can J Bot Rev Can Bot 69:147-155.

Renganathan V and Gold MH (1986). Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25:1626-1631.

Rothschild N, Novotny C, Sasek S, and Dosoretz CG (2002). Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb Technol 31:627-633.

Roy BP, Paice MG, Archibald FS, Misra SK, and Misiak LE (1994). Creation of metal-complexing agents, reduction of manganese-dioxide, and promotion of manganese peroxidase-mediated mn(iii) production by cellobiose-quinone oxidoreductase from Trametes-versicolor. J Biol Chem 269:19745-19750.

Ruel K and Joseleau JP (1991). Involvement of an extracellular glucan sheath during degradation of populus wood by Phanerochaete chrysosporium. Appl Environ Microbiol 57:374-384.

Ruiz-Duenas FJ, Martinez MJ, and Martinez AT (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223-235.

Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martinez MJ, and Martinez AT (2001). A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116-122.

Ruttimann C, Schwember E, Salas L, Cullen D, and Vicuna R (1992). Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16:64-76.

Rypacek V (1977). Chemical composition of hemicelluloses as a factor participating in the substrate specificity of wood-destroying fungi. Wood Sci Technol 11:59-67.

Sannia G, Giardina P, Luna M, Rossi M, and Buonocore V (1986). Laccase from Pleurotus ostreatus. Biotechnol Lett 8:797-800.

Sarkanen KV and Ludwig CH (1971). Definition and nomenclature. In: Sarkanen KV, Ludwig CH eds. Lignins: Occurrence,

Formation, Structure and Reactions. New York: John Wiley & Sons. pp 1-18.

Scott GM, Akhtar M, Lentz MJ, Kirk TK, and Swaney R (1998). New technology for papermaking: commercializing biopulping. TAPPI J 81:220-225.

Sethuraman A, Akin DE, and Eriksson KEL (1999). Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus. Appl Microbiol Biotechnol 52:689-697.

Shimada M, Ma DB, Akamatsu Y, and Hattori T (1994). A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol Rev 13:285-296.

Silva A, CostaFerreira M, and Duarte JC (1996). Octyl glucoside inhibits [C-14]DHP mineralization whereas peroxidase activity is stimulated in Phanerochaete chrysosporium. Appl Biochem Biotechnol 60:83-94.

Srebotnik E and Messner K (1988). Determination of the accessibility of lignocellulosic substrates to enzymatic degradation by immunoelectron microscopy. Inst Phys Conf Ser: 107-108.

Srebotnik E and Messner K (1994). A simple method that uses differential staining and light-microscopy to assess the selectivity of wood delignification by white-rot fungi. Appl Environ Microbiol 60:1383-1386.

Srebotnik E, Jensen KA, Jr, and Hammel KE (1994). Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc Natl Acad Sci USA 91:12794-12797.

Streeter CL, Conway KE, Horn GW, and Mader TL (1982). Nutritional evaluation of wheat straw incubated with the edible mushroom Pleurotus ostreatus. J Anim Sci 54:183-188.

Tanaka H, Itakura S, and Enoki A (1999a). Hydroxyl radical generation and phenol oxidase activity in wood degradation by the white-rot basidiomycete Irpex lacteus. Mater Org 33:91-105.

Tanaka H, Itakura S, and Enoki A (1999b). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol 75:57-70.

Temp U and Eggert C (1999). Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 65:389-395.

Teunissen PJ and Field JA (1998). 2-Chloro-1,4-dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Lett 439:219-223.

Tien M and Kirk K (1983a). Lignin degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280-2284.

Tien M and Kirk TK (1983b). Lignin degrading enzyme from hymenomycete Phanerochaete chrysosporium Burds. Science 221:661-662.

Tien M, Kirk TK, Bull C, and Fee JA (1986). Steady-state and transient-state kinetic studies on oxidation of 3,4-dimeth-oxylbenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium. J Biol Chem 261:1687-1693.

Timofeevski SL, Reading NS, and Aust SD (1998). Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Arch Biochem Biophys 356:287-295.

on the oxidation of 4-bromophenol by lignin peroxidase. Enzyme Microb Technol 30:490-498.

Wariishi H and Gold MH (1990). Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem 265:2070-2077.

Wariishi H, Marquez L, Dunford HB, and Gold MH (1990). Lignin peroxidase compound-II and compound-III—spectral and kinetic characterization of reactions with peroxides. J Biol Chem 265:11137-11142.

Wood PM (1994). Pathways of production of fenton reagent by wood-rotting fungi. FEMS Microbiol Rev 13:313-320.

Wood DA and Smith JF (1987). The cultivation of mushrooms. In: Norris JR, Pettipher GL eds. Essays in Agricultural and Food Microbiology. New York: John Wiley & Sons Ltd. pp 309-343.

Yokota S, Umezawa T, Hattori T, and Higuchi T (1991). Degradation of a (ß-O-4)-(5-50) lignin substructure model trimer by lignin peroxidase preparation. Mokuzai Gakkaishi 37:644-648.

Yoshida S, Chatani A, Honda Y, Watanabe T, and Kuwahara M (1998). Reaction of manganese peroxidase of Bjerkandera adusta with synthetic lignin in acetone solution. J Wood Sci 44:486-490.

Zadrazil F and Brunnert H (1980). The influence of ammonium nitrate supplementation on degradation and in vitro digestibility of straw colonized by higher fungi. Eur J Appl Microbiol Biotechnol 9:37-44.

Zadrazil F and Reinger P (1988). Treatment of lignocellulosics with white-rot fungi, 1st ed. London: Elsevier Applied Science.

Zhao J and Janse BJH (1996). Comparison of H2O2-producing enzymes in selected white rot fungi. FEMS Microbiol Lett 139:215-221.

Tuor U, Winterhalter K, and Fiechter A (1995). Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1-17.

Umezawa T and Higuchi T (1989). Cleavages of aromatic ring and beta-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 242:325-329.

Urzua U, Larrondo LF, Lobos S, Larrain J, and Vicuna R (1995). Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis-subvermispora. FEBS Lett 371:132-136.

Urzua U, Kersten PJ, and Vicuna R (1998). Manganese peroxidase dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64:68-73.

Vares T, Lundell TK, and Hatakka AI (1992). Novel heme-containing enzyme possibly involved in lignin degradation by the white-rot fungus Junghuhnia-separabilima. FEMS Microbiol Lett 99:53-58.

Vares T, Lundell TK, and Hatakka AI (1993). Production of multiple lignin peroxidases by the white-rot fungus Phlebia-ochraceofulva. Enzyme Microb Technol 15:664-669.

Vares T, Kalsi M, and Hatakka A (1995). Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw. Appl Environ Microbiol 61:3515-3520.

Waldner R, Leisola MSA, and Fiechter A (1988). Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400-407.

Ward G, Belinky P, Hadar Y, Bilkis I, and Dosoretz CG (2002). The influence of non-phenolic mediators and phenolic co-substrates

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment