References

addition. Laccases from days 23 and 25 were initially less efficient. However, the spectra after 20 h reaction showed the extent of removal of the peak around 595 nm and the most efficient color removal was observed for laccases from day 4 and 25 (Figure 6). Although the rate of decolorization for day 25 laccase had appeared slower over the first 7 h (Figure 5), its decolorization efficiency had proceeded further after 20 h. This observation is probably related to the observed differences in electrophoretic properties.

Figure 6 UV/Vis spectra of solutions shown in Figure 5 after a 20 h reaction time.

Ander P and Eriksson K-E (1977). Selective degradation of wood components by white-rot fungi. Physiol Plantarum 41:139-148.

Ander P and Eriksson K-E (1978). Lignin degradation and utilisation by micro-organisms. In: Bull MJ ed. Prog Indust Microbiol. Vol. 14. Amsterdam: Elsevier Scientific. pp 1-58.

Archibald F, Paice MG, and Jurasek L (1990). Decolourisation of kraft bleached effluent lignins by Coriolus versicolor. In: Kirk TK, Chang H-m eds. Biotechnology in Pulp and Paper Manufacture. Applications and Fundamental Investigations. Boston: Butterworth-Heinemann. pp 253-262.

Athanasopoulos N (1991). Biodegradation of textile wastewaters. In: Martin AM ed. Biological Degradation of Wastes. Essex: Elsevier Science Publishers. pp 389-411.

Bao W, O'Malley DM, Whetten R, and Sederoff RR (1993). A laccase associated with lignification in loblolly pine xylem. Science 260:672-674.

Bergbauer M, Eggert C, and Kraepelin G (1991). Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 35:105-109.

Biswas-Hawkes D, Dodson APJ, Harvey P, and Palmer JM (1987). Ligninases from white-rot fungi. In: Odier E ed. Lignin Enzymic and Microbial Degradation. Paris: INRA Publications. pp 125-130.

Blanchette RA (1984). Manganese accumulation in wood decayed by white-rot fungi. Am Phytopathol Soc 74:725-730.

Bourbonnais R and Paice MG (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99-102.

Bourbonnais R, Paice MG, Reid ID, Lanthier P, and Yaguchi M (1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethyl-benzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876-1880.

Bumpus JA and Brock BJ (1988). Biodegradation of crystal violet by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143-1150.

Buswell JA (1991). Fungal degradation of lignin. In: Arora DK, Rai B, Mukerji KG, Knudsen GR eds. Handbook of Applied Mycology. Soil and Plants. Vol. 1. New York: Marcel Dekker Inc. pp 425 -480.

Buswell JA and Odier E (1987). Lignin biodegradation. CRC Crit Rev Biotechnol 6:1-60.

Chen C-L and Chang H-M (1985). Chemistry of lignin biodegradation. In: Higuchi T ed. Biosynthesis and Biodegradation of Wood Components. London: Academic Press. pp 535-557.

Chivukula M and Renganathan V (1995). Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374-4377.

Chivukula M, Spadaro JT, and Renganathan V (1995). Lignin peroxidase-catalysed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765-7772.

Clutterbuck AJ (1972). Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol 70:423-435.

Coll PM, Fernandez-Abalos JM, Villanueva JR, Santamaria R, and Perez P (1993a). Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidio-mycete PM1(CECT 2971). Appl Environ Microbiol 59:2607-2613.

Crawford DL and Crawford RL (1980). Microbial degradation of lignin. Enzyme Microb Technol 2:11-22.

Cripps C, Bumpus JA, and Aust SD (1990). Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114-1118.

Dodson PJ, Evans CS, Harvey PJ, and Palmer JM (1987). Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Ca-Cß cleavage in a lignin model compound. FEMS Microbiol Lett 42:17-22.

Eggert C, Temp U, and Eriksson K-EL (1996). The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151-1158.

Eriksson K-E, Blanchette RA, and Ander P (1990).Timell TE ed. Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin: Springer-Verlag.

Farver O and Pecht I (1981). Electron transfer processes of blue copper proteins. In: Spiro TG ed. Copper Proteins. New York: Wiley-Interscience. pp 153 -192.

Field JA, de Jong E, Feijoo-Costa G, and de Bont JAM (1993). Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44-48.

Forrester IT, Grabski AC, Burgess RR, and Leatham GF (1988). Manganese, Mn-dependent peroxidases and the biodegradation of lignin. Biochem Biophys Res Commun 157:992-999.

Fuhrer BA (1985). A Field Companion to Australian Fungi. Melbourne: The Five Mile Press. p 127.

Fukui H, Presnell TL, Joyce TW, and Chang H-m (1992). Dechlorination and detoxification of bleach plant effluent by Phanerochaete chrysosporium. J Biotechnol 24:267-275.

Glaser JA (1990). Hazardous waste degradation by wood degrading fungi. In: Kamely D, Chakrabarty A, Omenn GS eds.

Biotechnology and Biodegradation. Houston: Gulf Publishing Co. pp 267-284.

Glenn JK and Gold MH (1983). Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741-1747.

Glenn JK and Gold MH (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329-341.

Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, and Gold MH (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white-rot basidio-mycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077-1083.

Glenn JK, Akileswaran L, and Gold MH (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688-696.

Gogna E, Vohra R, and Shama P (1992). Biodegradation of rose Bengal by P. chrysosporium. Lett Appl Microbiol 14:58-60.

Gold MH, Glenn JK, Mayfield MB, Morgan MA, and Kutsuki H (1983). Biochemical and genetic studies on lignin degradation by Phanerochaete chrysosporium. In: Higuchi T, Chang H-M, Kirk TK eds. Recent Advances in Lignin Biodegradation Research. Tokyo: University Publishing Co. Ltd. pp 219-232.

Gold MH, Glenn JK, and Alic M (1988). Use of polymeric dyes in lignin biodegradation assays. In: Wood WA, Kellog ST eds. Meth Enzymol Vol 161. Biomass, Part B Lignin, Pectin and Chitin. San Diego: Academic Press, Inc. pp 74-78.

Hames BD (1990). One-dimensional polyacrylamide gel electro-phoresis. In: Hames BD, Rickwood D eds. Gel Electrophoresis of Proteins. A Practical Approach. Oxford: Oxford University Press. pp 1-147.

Hammel KE (1989). Organopollutant degradation by ligninolytic fungi. Enzyme Microb Technol 11:776-777.

Hatakka AI (1985). Degradation of veratric acid and other lignin-related aromatic compounds by the white-rot fungus Pycnoporus cinnabarinus. Arch Microbiol 141b:22-28.

Hatakka A, Kantelinen A, Tervila-Wilo A, and Viikari (1987). Production of ligninases by Phlebia radiata in agitated cultures. In: Odier E ed. Lignin Enzymic and Microbial Degradation. Paris: INRA Publications. pp 185-189.

Higuchi T (1985). Biosynthesis of lignin. In: Higuchi T ed. Biosynthesis and Biodegradation of Wood Components. San Diego: Academic Press. pp 141-160.

Higuchi T (1989). Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lewis NG, Paice MG eds. Plant Cell Wall Polymers. Biogenesis and Biodegradation. Washington: American Chemical Society. pp 482-502.

Jones CL, Lonergan GT, and Mainwaring DE (1993). The use of digital image segmentation to quantify and aminoanthraquinone dye biotransformation by white-rot fungi. Biotechnol Tech 7:645-650.

Jonsson L, Johansson T, Sjostrom K, and Nyman PO (1987). Purification of ligninase isozymes from the white-rot fungus Trametes versicolor. Acta Chem Scand B41:766-769.

Joyce TW, Chang H-m, Campbell AG, and Kirk TK (1984). A continuous biological process to decolorize bleach plant effluents. Biotechnol Adv 2:301-308.

Kahmark KA and Unwin JP (1996). Pulp and paper management. Water Environ Res 68:551-564.

Kantelinen A, Waldner R, Niku-Paavola ML, and Leisola MSA (1988). Comparison of two lignin-degrading fungi: Phlebia radiata and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 28:193-198.

Kirk TK (1971). Effects of microorganisms on lignin. Annu Rev Phytopathol 9:182-210.

Kirk TK and Farrell RL (1987). Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41:465-505.

Kling SH and Neto JSA (1991). Oxidation of methylene blue by crude lignin peroxidase from P. chrysosporium. J Biotechnol 21:295-300.

Knapp JS, Newby PS, and Reece LP (1995). Decolorization of dyes by wood-rotting Basidiomycete fungi. Enzyme Microb Technol 17:664-668.

Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, and Kita Y (1990). Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 265:15224-15230.

Kuwahara M, Glenn JK, Morgan MA, and Gold MH (1984). Separation and characterization of two extracellular H2O2-dependent peroxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247 -250.

Leisola MSA and Garcia S (1989). The mechanism of lignin degradation. In: Coughlan MP ed. Enzyme Systems for Lignocellulose Degradation. Essex: Elsevier Science Publishers. pp 89-99.

Lewandowski GA, Armenante PM, and Pak D (1990). Reactor design for hazardous waste treatment using a white rot fungus. Water Res 24:75-82.

Li J-B, McMillin DR, and Antholine WE (1992). Evidence for temperature-dependent changes in the coupling within the Type2/Type3 cluster of laccase. J Am Chem Soc 114:725 -727.

Linko S (1988). Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chryso-sporium in a 10-1 bioreactor. Enzyme Microb Technol 10:410-417.

Lonergan G, Jones CL, Schliephake K, Jones C, and Mainwaring DE (1993). The degradation of an industrial-grade dye, Remazol Brilliant Blue R, by the white-rot fungus Pycnoporus cinnabarinus in a bench-scale bioreactor. 11th Australian Biotechnology Conference, Perth, p 162.

Lonergan GT, Panow A, Jones CL, Schliephake K, and Mainwaring DE (1995a). The degradation of an industrial dye in a 200 L pilot plant by the white-rot fungus, Pycnoporus cinnabarinus. 4th Pacific Rim Biotechnology Conference, Melbourne, p 63 -64.

Lonergan GT, Panow A, Jones CL, Schliephake K, Ni J, and Mainwaring DE (1995b). Physiological and biodegradative behaviour of the white-rot fungus, Pycnoporus cinnabarinus in a 200litre packed-bed bioreactor. Aust Biotechnol 5:107-111.

Lonergan GT, Luckey M, and Schliephake K (1996). The decolourisation of both industrial grade and purified dye utilising laccase from the white-rot fungus, Pycnoporus cinnabarinus. Proceedings of the 10th International Biotechnology Symposium, Sydney, p 169.

Macdonald R and Westerman J (1979). A Field Guide to Fungi of South-Eastern Australia. Melbourne: Thomas Nelson Australia Pty Ltd. pp 6-112.

Malkin R, Malmström BG, and Vanngard (1969). Spectroscopic differentiation of the electron-accepting sites in fungal laccase.

Association of a near ultraviolet band with a two electron accepting unit. Eur J Biochem 10:324-329.

Masaphy S and Levanon D (1992). The effect of lignocellulose on lignocellulolytic activity of Pleurotus pulmonarius in submerged culture. Appl Microbiol Biotechnol 36:828-832.

Mayer AM (1987). Polyphenol oxidases in plants—recent progress. Phytochemistry 26:11 -20.

Mayer AM and Harel E (1979). Polyphenol oxidase in plants. Phytochemistry 18:193-215.

Meyer U (1981). Biodegradation of synthetic organic colorants. FEMS Symp 12:371-385.

Morpugo L, Graziani MT, Marcozzi G, and Avigliano L (1993). Role of reduction potentials in copper abstraction from the trinuclear cluster of blue oxidases. J Inorg Biochem 51:641-647.

Nerud F and Misurcova Z (1996). Distribution of ligninolytic enzymes in selected white-rot fungi. Folia Microbiol 41:264-266.

Nigam P, McMullan G, Banat IM, and Marchant R (1996). Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnol Lett 18:117-120.

Niku-Paavola ML (1987). Ligninolytic enzymes of the white-rot fungus Phlebia radiata. In: Odier E ed. Lignin Enzymic and Microbial Degradation. Paris: INRA Publications. pp 119-123.

Niku-Paavola M-L, Karhunen E, Salola P, and Raunio V (1988). Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 354:877-884.

Ollikka P, Alhonmaki K, Leppanen V-M, Glumoff T, Raijola T, and Suominen I (1993). Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010-4016.

O'Malley DM, Whetten R, Bao W, Chen C-L, and Sederoff RR (1993). The role oflaccase in lignification. Plant J 44:751-757.

Oxspring DA, McMullan G, Smyth WF, and Marchant R (1996). Decolourisation and metabolism of the reactive textile dye, Remazol Black B, by an immobilized microbial consortium. Biotechnol Lett 16:527-530.

Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, and Crawford RL (1992). Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605-3613.

Paszczynski A, Huynh V-B, and Crawford R (1985). Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37-41.

Paszczynski A, Huynh V-B, and Crawford R (1986). Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750-765.

Paszczynski A, Pasti MB, Goszczynski S, Crawford DL, and Crawford RL (1991). New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzyme Microb Technol 13:378-384.

Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford RL, and Crawford DL (1992). Mineralisation of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Strepto-myces chromofuscus. Appl Environ Microbiol 58:3598-3604.

Platt MW, Hadar Y, and Chet I (1985). The decolorization of the polymeric dye Poly-Blue (polyvinalamine sulfonate-anthraquinone) by lignin degrading fungi. Appl Microbiol Biotechnol 21:394-396.

Reinhammar B (1984). Laccase. In: Lontie R ed. Copper Protein and Copper Enzymes. Vol III. Florida: CRC Press. pp 1-34.

Reinhammar B and Malmström BG (1981). "Blue" copper-containing oxidases. In: Spiro TG ed. Copper Proteins. New York: Wiley-Interscience. pp 109-149.

Royer G, Livernoche D, Desrochers M, Jurasek L, Rouleau D, and Mayer RC (1983). Decolorization of kraft mill eflluent: kinetics of a continuous process using immobilized Coriolus versicolor. Biotechnol Lett 5:321-326.

Schliephake K, Mainwaring DE, Lonergan GT, Jones IKJ, and Baker WL (2000). Transformation and degradation of the disazo dye Chicago sky blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Technol 27:100-107.

Schoemaker HE, Meijer EM, Leisola MSA, Haemmerli SD, Waldner R, Sanglard D, and Schmidt HWH (1989). Oxidation and reduction in lignin biodegradation. In: Lewis NG, Paice MG eds. Plant Cell Wall Polymers. Biogenesis and Biodegradation. Washington: American Chemical Society. pp 454-471.

Shaul GM, Holdsworth TJ, Dempsey CR, and Dostal KA (1991). Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22:107-119.

Solomon EI (1988). Coupled binuclear copper active sites. In: Que L, Jr ed. Metal Clusters in Proteins. Washington: American Chemical Society. pp 116-149.

Spadaro JT, Gold MH, and Renganathan V (1992). Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397-2401.

Sundmann G, Kirk TK, and Clang H-m (1981). Fungal decolorization of kraft bleach plant effluent. Tappi J 64:145-148.

Thurston CF (1994). The structure and function of fungal laccases. Microbiology 140:19-26.

Tien M and Kirk TK (1983). Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 221:661-663.

Tien M and Kirk TK (1988). Lignin peroxidase of Phanerochaete chrysosporium. In: Wood WA, Kellogg ST eds. Meth Enzymol. Vol. 161. Washington: Academic Press Inc. pp 238 -249.

Tonon F and Odier E (1988). Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 54:466-472.

Tuor U, Winterhalter K, and Fiechter A (1995). Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1-17.

Vyas BRM and Molitoris HP (1995). Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R. Appl Environ Microbiol 61:3919-3927.

Waldner R, Leisola MSA, and Fiechter A (1988). Comparison of ligninolytic activities of selected fungi. Appl Microbiol Biotechnol 29:400-407.

Youn H-D, Kim K-J, Maeng J-S, Han Y-H, Jeong I-B, Jeong G, Kang S-O, and Hah YC (1995). Single electron transfer by an extracellular laccase from the white-rot fungus Pleurotus ostreatus. Microbiology 141:393-398.

Making Your Own Wine

Making Your Own Wine

At one time or another you must have sent away for something. A

Get My Free Ebook


Post a comment