The Balancing Role Of Food Technology

Historically applications of agronomic practices have been the most significant exploitation for food production. Many countries rely on importation of food grains, fruits, and vegetables. However, many nations have shortfalls of food crops that are exasperated by unpredictable global climate change. The world production of grains per person has remained at about 300-340kg since 1970s. Of the three— wheat, rice, and corn—the world wheat carryover stock was at 78 days in 1999. The food security threshold is 70 days. The supply of rice stocks was down to 42 days of consumption; consumption had been on the rise for 26 consecutive years since 1973 (Khachatourians 2002). A decade has passed since the United Nations' Framework Convention on Climate Change, and even with three major gatherings, Rio Earth Summit, Kyoto Protocol, and this year's Johannesburg World Summit on Sustainable Development, we are no where near adoption of a policy that would help sustain world development trends, whether food and agriculture, or food security and safety, or population increase.

The summer of 2002 brought drought to parts of the North America and flooding to parts of Europe and Asia which seriously affected world wheat and other grains production, subsequent grain harvesting, and overall food production markets. If we add the role of water in irrigation, sustainability of food and agriculture trends for production, and its scarcity, the outlook deteriorates dramatically. A total of 1000 ton of water is required to produce 1 ton of grain. Aquifer depletion or contamination is an ignored but real threat to plant based food production. Various contributions of biotechnology and construction of transgenic plants and applications of microbial biotechnology are one of the known trends for building production capacity in the next 25 years (Khachatourians 2002; Khachatourians et al. 2002).

It is becoming increasingly clear that the once known questions and hence answers of food production are no longer that well known or understood (Khachatourians 2001). Other unknown elements of further increase in appropriate food production are the understanding of the shift that has occurred in the paradigmatic aspects of food science, from the delicate balance of the interplay in organismic biology, Availability of germplasms, and Applications of biotechnology to co-operation of environment and issues of food governance, science, safety, and economics (Phillips and Wolfe 2001). While plant and animal biomass based food production is advancing more rapidly than in past decades, new understandings of the processes involved in production and post production events, especially by biotechnological means can and add value to post production agriculture to foods and new products by microorganisms. Innovation, invention, and investments in biotechnology will continue to impact the food industry and possibly help to maintain equilibrium of food production and consumption (Phillips and Khachatourians 2001).

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment