Applications of protein Engineering foR Foodprocessing Enzymes

The advent of biotechnology has made it possible to modify proteins to increase their existing functional activity, or to impart new functional properties for a desired application. Protein engineering includes changing amino acids at key positions in the molecule that can modify their structural and/or functional properties. The first applications have focused on the engineering of food enzymes to improve their stability under food-processing conditions. For example, protein engineering has been used to modify proteases by changing key amino acids to increase their stability to high temperatures and pH — conditions that can occur during food processing.123 Another example is the modification of a-amylases to increase thermostability for production of sweeteners from corn starch.124 Biotechnology has also made it possible to identify and produce enzymes from thermophillic and psychrophilic microbes that exhibit unique thermostable properties, as the organisms that produced them live in extreme environmental conditions (e.g., volcanic heated pools or vents).

A recent review by Spok discusses other tools used to improve enzyme performance: "Combinatorial approaches of rational protein design and directed evolution methods turn out to efficiently alter the properties of enzymes, enzyme stability, catalytic mechanism, substrate specificity and range, surface activity, folding mechanisms, cofactor dependency, pH and temperature optima, and kinetic parameters have been successfully modified."63 Other techniques such as protein shuffling can increase the variability of enzymes that can be produced and may yield enzymes that can carry out catalytic activities that were heretofore not possible with existing enzymes.63

Biotechnology is being used to reduce the potential for contamination of enzyme concentrates with toxic impurities, which can benefit the consumer. It is now possible to introduce the gene coding for food enzymes into microorganisms that have been well characterized and have an established history of safe use because they do not make toxic impurities.63 Given this scenario, it is probably not necessary to continue carrying out 90-day rat safety studies when the fermentation organisms are known to not produce toxic contaminants and the enzyme is fully characterized.

Fantastic Organic Food Facts

Fantastic Organic Food Facts

Get All The Support And Guidance You Need To Be A Success At Utilizing Organic Foods. This Book Is One Of The Most Valuable Resources In The World When It Comes To Getting The Right Information About Eating Healthy With Organic Food.

Get My Free Ebook

Post a comment