References

1. James, C., Global status of commercialized Biotech/GM crops, 2006, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, 2007.

2. Schnepf, E. et al., Bacillus thuringiensis and its pesticidal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 1998.

3. Crickmore, N. et al., Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 807, 1998.

4. Laird, M., Lacey, L.A., and E.W. Davidson, Eds., Safety of Microbial Insecticides, CRC Press, Inc., Boca Raton, FL, 1990.

5. Glare, T.R. and O'Callaghan, M., Bacillus thuringiensis: Biology, Ecology and Safety, John Wiley & Sons, Chichester, UK, 2000.

6. Siegel, J.P., The mammalian safety of Bacillus thuringiensis-based insecticides, J. Invertebr. Pathol., 77, 13, 2001.

7. Gould, F.L. et al., Environmental Effects of Transgenic Plants, National Academy Press, Washington, D.C., 2002.

8. Federici, B.A., Bacillus thuringiensis in biological control, in Handbook of Biological Control, Bellows, T.S, Gordh, G., and Fisher, T.W., Eds., Academic Press, San Diego, 1999, chap. 21.

9. Baumann, L. et al., Phenotypic characterization of Bacillus thuringiensis (Berliner) and B. cereus (Frankland & Frankland), J. Invertebr. Pathol., 44, 329, 1984.

10. Hill, K.K. et al., Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates, Appl. Environ. Microbiol., 70, 1068, 2004.

11. Rasko, D.A. et al., Genomics of the Bacillus cereus group organisms, FEMS Microbiol Rev,, 29, 303, 2005.

12. Helgason, E. et al., Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis — One species on the basis of genetic evidence, Appl. Environ. Microbiol, 66, 2627, 2000.

13. Lecadet, M.M. et al., Updating the H-antigen classification of Bacillus thuringiensis, J. Appl. Microbiol., 86, 660, 1999.

14. Berry, C. et al., Complete sequence and organization of pBtoxis, the toxin-coding plas-mid of Bacillus thuringiensis subsp. israelensis, Appl. Environ. Microbiol, 68, 5082, 2002.

15. Heimpel, A.M. and Angus, T.A., Bacterial insecticides, Microbiol. Rev, 24, 266, 1960.

16. Broderick, N.A., Raffa, K.F., Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity, Proc. Natl. Acad. Sci. USA, 103, 15196, 2006.

17. Burges, H.D. and Hurst, J.A., Ecology of Bacillus thuringiensis in storage moths, J. Invertebr. Pathol, 30, 131, 1977.

18. Itova-Apoyolo, C. et al., Isolation of multiple species of Bacillus thuringiensis from a population of the European sunflower moth, Homoeosoma nebuella, Appl. Environ. Microbiol, 61, 4343, 1995.

19. Donovan, W.P., Donovan, J.C., and Engleman, J.T., Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipisilon and Spodoptera exigua, J. Invertebr. Pathol, 74, 45, 2001.

20. Li, J., Carroll, J., and Ellar, D.J., Crystal structure of insecticidal S-endotoxin from Bacillus thuringiensis at 2.5 angstrom resolution, Nature, 353, 815, 1991.

21. de Maagd R.A. et al., Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria, Ann. Rev. Genet., 37, 409, 2003.

22. Ge, A.Z., Shivarova, N.I., and Dean, D.A., Location of the Bombyx mori specificity domain of a Bacillus thuringiensis delta-endotoxin protein, Proc. Natl. Acad. Sci. USA, 86, 4037, 1989.

23. Hoffman, C. et al., Specificity of Bacillus thuringiensis S-endotoxins is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midgets, Proc. Natl. Acad. Sci. USA, 85, 7844, 1988.

24. Van Rie, J. et al., Receptors on the brushborder membranes of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins, Appl. Environ. Microbiol., 56, 1378, 1990.

25. Lee, M.K., et al., Location of a Bombyx mori receptor binding domain on a Bacillus thuringiensis delta-endotoxin, J. Biol. Chem., 267, 3115, 1992.

26. Sangadala, S. et al., A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro, J. Biol. Chem, 269, 10088, 1994.

27. Griffiths, J.S. et al., Glycolipids as receptors for Bacillus thuringiensis crystal toxin, Science, 5711, 922, 2005.

Noteborn, H.P. J. et al., Safety Assessment of Bacillus thuringiensis insecticidal protein CRYIA(b) expressed in transgenic tomato, in Genetically Modified Foods: Safety Issues, Engel, K-H., Takeoka, G.R., and Teranishi, R., Eds., American Chemical Society, Washington, D.C. , 1995.

Bravo, A. et al., Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochem. Biophys. Acta, 1667, 38, 2004.

Knowles, B.H. and Dow, J.A.T., The crystal S-endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut, BioEssays, 15, 469, 1993. Bravo, A. et al., N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin, J. Biol. Chem., 27, 23985, 2002.

Butko, P., Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses, Appl. Environ. Microbiol, 69, 2415, 2003.

Wirth, M.C., Georghiou, G.P., and Federici, B.A., Cyt1A enables CrylV endotoxins of Bacillus thuringiensis to overcome high levels of CrylV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad. Sci. USA, 94, 10536, 1007. Betz, F.S., Forsyth, S.F., and Stewart, W.E., Registration requirements and safety considerations for microbial pest control agents in North America, in Safety of Microbial Insecticides, Laird, M., Lacey, L.A., and E.W. Davidson, E.W., Eds., CRC Press, Inc., Boca Raton, FL, 1990.

Lacey, L.A. and Mulla, M.S., in Bacterial Control of Mosquitoes & Blackflies: Biochemistry, Genetics, & Applications of Bacillus thuringiensis and Bacillus sphaericus, de Barjac, H. and Sutherland, D.J., Eds., Rutgers University Press, New Brunswick, NJ, 1990.

McClintock, J.T., Schaffer, C.R., and Sjoblad, R.D., A Comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides, Pestic. Sci. 45, 95, 1995. Hansen B.M., Enterotoxins — A potential risk of using B. thuringiensis products. Platform presentation, Danish Centre of Biological Control workshop on Health and Environmental Risks by the use of Organisms for Biological Control of Pests and Diseases in Agriculture, 2004.

Samples, J.R. and Buettner, H., Ocular infection caused by a biological insecticides, J. Infect. Dis., 148, 614, 1983.

Siegel, J.P. and Shadduck, J.A., Clearance of Bacillus sphaericus and Bacillus thuringiensis ssp. israelensis from mammals, J. Econ. Entomol., 83, 347, 1990. Siegel, J.P. and Shadduck, J.A., Mammalian safety of Bacillus thuringiensis israelensis, in Bacterial Control of Mosquitoes & Blackflies: Biochemistry, Genetics, & Applications of Bacillus thuringiensis and Bacillus sphaericus, de Barjac, H. and Sutherland, D.J., Eds., Rutgers University Press, New Brunswick, NJ, 1990.

Damgaard, P.H. et al., Characterization of Bacillus thuringiensis isolated from infections and burn wounds, FEMS Immun. Med. Microbiol, 18, 47, 1997. Granum, P.E. and Lund, S.J., Bacillus cereus and its food poisoning toxins, FEMS Microbiol. Lett, 157, 223, 1997.

Agata, N. et al., A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus, FEMS Microbiol. Lett, 129, 17, 1995.

Isobe, M. et al., Synthesis and activity of cereulide, a cyclic dodecadepsipeptide iono-phore as an emetic toxin from Bacillus cereus, Bioorg. Med. Chem. Lett, 5, 2855, 1995. Granum, P.E., Bacillus cereus and its toxins, J. Appl. Bact. Symp. Suppl, 76, 61S, 1994. McKillup, J.L., Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp.: A literature review, Antonie van Leeuwenhoek, 77, 393, 2000. Rosenquist, H. et al., Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food, FEMS Microbio. Lett., 250, 129, 2005.

48. Fredericksen, K. et al., Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables, Appl. Environ. Microbiol, 72, 3435, 2006.

49. Hauge, S.J., Food poisoning caused by aerobic spore forming bacilli, Appl. Bacteriol., 18, 591, 1955.

50. Dack, G.M. et al., Failure to produce illness in human volunteers fed Bacillus cereus and Clostridium perfringens, J. Infect. Dis., 82, 34, 1954.

51. Christiansson, A., The toxicology of Bacillus cereus, Bull. Intl. Dairy Fed, 275, 30, 1992.

52. Christiansson, A., Bertilsson, J., and Svensson, B., Bacillus cereus spores in raw milk: Factors affecting the contamination of milk during grazing period, J. Dairy Sci., 82, 305, 1999.

53. Granum, P.E. et al., Enterotoxin from Bacillus cereus: Production and biochemical characterization, Neth. Milk Dairy J., 47, 63, 1993.

54. Turnbull. P.C.B., Studies on the production of enterotoxins by Bacillus cereus, J. Clin. Pathol, 29, 941, 1995.

55. Hansen B.M. and Hendriksen, N.B., Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis, Appl. Environ. Microbiol, 67,185, 2001.

56. Beecher, D.J. and Wong, A.C.L., Identification and analysis of the antigen detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits, Appl. Environ. Microbiol., 60, 4614, 1994.

57. Rivera, A.M.G., Granum, P.E., Priest, F.G., Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis, FEMS Microbiol. Lett., 190, 151, 2000.

58. Beattie, S.H. and Williams, A.G., Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay, Lett. Appl. Microbiol, 28, 221, 1999.

59. Perani, M., Bishop, A.H., Vaid, A. Prevalence of P-exotoxin, diarrhoeal toxin and specific S-endotoxin in natural isolates of Bacillus thuringiensis, FEMS Microbiol. Lett, 160, 55, 1998.

60. Damgaard, P.H., Diarrhoeal enterotoxin production by strains of Bacillus thuringien-sis isolated from commercial Bacillus thuringiensis-based insecticides, FEMS Immun. Med. Microbiol, 12, 245, 1995.

61. Bowman, L., Detection of enterotoxin in Valent BioSciences Bt strains, Valent BioSciences, Libertyville, IL, unpublished report, 2004.

62. Goepfert, J.M. Monkey feeding trials in the investigation of the nature of Bacillus cereus food poisoning, in: Proc. IV International Congress of Food Science Technology, Vol. III, 178-181, 1974.

63. Peter, C. et al., Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus, Am. J. Clin. Nutrit, 32, 219, 1979.

64. Glatz, B.A., Spira, W.M., Goepfert, J.M., Alteration of vascular permeability in rabbits by culture filtrates of Bacillus cereus and related species, Appl. Microbiol, 10, 229, 1974.

65. Wilks, A. and Licht, T.R., Bacillus thuringiensis: Fate and effect in human flora associated rats, Platform presentation, Danish Centre of Biological Control workshop on Health and Environmental Risks by the use of Organisms for Biological Control of Pests and Diseases in Agriculture, 2004.

66. Bishop, A.H., Johnnson, C. and Perani, M., The safety of Bacillus thuringiensis to mammals investigated by oral and subcutaneous dosage, World J. Microbiol. Biotech-nol., 15, 375, 1999.

67. Ray, D.E., Pesticides derived from plants and other organisms, in Handbook of Pesticide Toxicology Vol. 2, Hayes, W.J. and Laws, E.R., Eds., Academic Press, New York, 1991.

68. Fisher, R. and Rosner, L., Toxicology of the microbial insecticide, thuricide, Agri. Food Chem, 7, 686, 1959.

69. Hadley, W.M. et al., Five-month oral (diet) toxicity/infectivity study of Bacillus thuringiensis insecticides in sheep, Fund. Appl. Toxicol, 8, 236, 1987.

70. Itoh, T., Arai, T., and Hirata, I., Enteropathogenicity of Bacillus thuringiensis for humans, Shokubutsu Boeki, 45, 18, 1991.

71. Sutherland, A.D. and Limond, A.M., Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus, J. Dairy Res, 60, 575, 1993.

72. Jaquette, C.B. and Beuchat, L.R., Combined effects of pH, Nisin, and temperature on growth and survival of psychrotrophic Bacillus cereus, J. Food Prot., 61, 563, 1998.

73. Bowman, L.H., Abbott Laboratories, personal communication.

74. Schmidt, K., Ed., WHO Surveillance Programme for Control of Food-Borne Infections and Intoxications in Europe, Sixth Report 1990-1992, Federal Institute for Health Protection of Consumers and Veterinary Medicine, Berlin, 1995.

75. Rosenquist, H., The occurrence and significance of B. thuringiensis in food, Platform presentation, Danish Centre of Biological Control workshop on Health and Environmental Risks by the use of Organisms for Biological Control of Pests and Diseases in Agriculture, 2004.

76. Damgaard, P.H. et al., Enterotoxin-producing strains of Bacillus thuringiensis isolated from food, Lett. Appl. Microbiol, 23, 146, 1996.

77. Rocourt, J. et al., The Present State of Foodborne Disease in OECD Countries, World Health Organization Report, Geneva, 2003.

78. Adak, G.K., Long, S.M., and O'Brien, S.J., Intestinal infection: Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000, Gut, 51, 832, 2002.

79. Hall J.A. et al., Epidemiologic profiling: evaluating foodborne outbreaks for which no pathogen was isolated by routine laboratory testing: United States, 1982-9, Epidemiol. Infect, 127, 381, 2001.

80. Herikstad, H. et al., A population-based estimate of the burden of diarrhoel illness in the United States: FoodNet, 1996-7, Epidemiol. Infect, 129, 9, 2002.

81. Mead, P.S. et al., Food-related illness and death in the United States, Emerg. Infect. Dis, 5, 607, 1999.

82. Wheeler J.G. et al., Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance, Brit. Med. J, 318, 1046, 1999.

83. Green, M.M. et al., Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86, Amer. J. Public Health, 80, 848, 1988.

84. Noble, M.A., Riben, P.D., and Cook, G.J., Microbiological and Epidemiological Surveillance Programme to Monitor the Health Effects of Foray 48B BTK Spray, Ministry of Forests, Province of British Columbia Report, 1992.

85. Aer'aqua Medicine Ltd., Health Surveillance Following Operation Evergreen: A Programme to Eradicate the White-Spotted Tussock Moth from the Eastern Suburbs of Auckland, Wellington, Ministry of Agriculture and Forestry, 2001.

86. The New Zealand Experience, Public Health Protective Service Health Report on Aerial Spray of Foray 48B to Control the White-Spotted Tussock Moth, 1997.

87. Petrie, K., Thomas, M. and Broadbent, E., Symptom complaints following aerial spraying with biological insecticide Foray 48B, The New Zealand Med. J, 116, 1, 2003.

88. Valadares de Amorim, G. et al., Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B, Appl. Environ. Microbiol. 67, 1035, 2001.

89. Pearce, M., Behie, G., and Chappell, N., The effects of aerial spraying with Bacillus thuringiensis kurstaki on area residents, Environ. Health Rev, 46, 19, 2002.

90. Teschke, K., et al., Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication, Environ. Health Perspect, 109, 47, 2001.

91. Hales, S., et al., Assessment of the potential health impacts of the "Painted Apple Moth" aerial spraying programme, Auckland, New Zealand Ministry of Health, 2004.

92. Hales, et al., Clustering of Childhood Asthma Hospital Admissions in New Zealand, 1999-2004, The 17th Ann. Colloq. Spatial Inform. Res. Centr., University of Otago, Denedin, New Zealand, 2005.

93. Bernstein, I.L., et al., Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides, Environ. Health Perspect., 107, 575, 1999.

94. Doekes, G., et al., IgE sensitization to bacterial and fungal biopesticides in a cohort of Danish greenhouse workers: The BIOGART study, Am. J. Indust. Med., 46, 404, 2004.

95. Betz, F.S., Hammond, B.G., Fuchs, R.L., Safety and advantages of Bacillus thuringien-sis-protected plants to control insect pests, Reg. Toxicol. Pharmacol, 32, 156, 2000.

96. Fitt, G.P., et al., Global Status and Impacts of Biotech Cotton, Report of the Second Expert Panel on Biotechnology of Cotton, International Cotton Advisory Committee, Washington, D.C., 2004.

97. Romeis, J., Meissle, M., and Bigler, F., Transgenic crops expressing Bacillus thuringi-ensis toxins and biological control, Nature Biotech., 24, 63, 2006.

98. Yu, L., Berry, R.R., and Croft, B.A., Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Orbatidae), Ecotoxicol., 90, 113, 1997.

99. Brake, J. and Vlachos, D., Evaluation of transgenic event 176 Bt-corn in broiler chickens, Poult. Sci., 77, 648, 1998.

100. Sanders, P.R. et al., Safety assessment of insect-protected corn, in Biotechnology and Safety Assessment, 2nd ed., Thomas, J.A., Ed., Taylor & Francis, Ltd, London. 1998, 241-256.

101. Hardee, D.D. and Bryan, W.W., Influence of Bacillus thuringiensis-transgenic nectar-less cotton on insect populations with emphasis on the tarnished plant bug (Heterop-tera: Miridae), J. Econ. Entomol., 90, 663, 1977.

102. Pilcher, C.D., et al., Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn, Environ. Entomol. 26, 446, 1997.

103. Orr, D.B and Landis, D.A., Oviposition of European corn borer (Lepidoptera: Pyrali-dae) and impact of natural enemy populations in transgenic versus isogenic corn, J. Econ. Entomol., 90, 905, 1997.

104. Losey, J.J., Raynor, L., and Cater, M.E., Transgenic pollen harms monarch larvae, Nature, 399, 214, 1999.

105. Hellmich, R.L., et al., Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen, Proc. Nat. Acad. Sci. USA, 98, 11925, 2001.

106. Sears, M.K. et al., Impact of Bt corn pollen on monarch butterfly populations: a risk assessment, Proc. Natl. Acad. Sci. USA, 98, 11937, 2001.

107. Wraight, C.L. et al., Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions, Proc. Nat. Acad. Sci. USA, 97, 7700, 2000.

108. Hilbeck, A. et al., Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae), Environ. Entomol, 27, 480, 1998.

109. Hilbeck, A., et al., Toxicity of Bacillus thuringiensis Cry1A(b) toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae), Environ. Entomol, 27, 1255, 1998.

110. Romeis, J., Dutton, A., and Bigler, F., Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae), J. Insect Physiol., 50, 175, 2004.

111. Naranjo, S., Graham, H., and Dively, G.P., Field studies assessing arthropod nontarget effects in Bt transgenic crops: Introduction, Environ. Entomol, 34, 1178, 2005.

112. Naranjo, S., Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies, Environ. Entomol, 34, 1193, 2005.

113. Naranjo, S., Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community, Environ. Entomol., 34, 1121, 2005.

114. Head, G. et al., A multiyear, large-scale comparison of Arthropod populations on commercially managed Bt and non-Bt cotton fields, Environ. Entomol, 34, 1257, 2005.

115. Torres, J.B. and Ruberson, J.R., Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: Patterns and mechanisms, Environ. Entomol, 34, 1242, 2005.

116. Whitehouse, M.E.A., Wilson, L.J., and Fitt, G.P., A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia, Environ. Entomol, 34, 1224, 2005.

117. Pilcher, C.D., Rice, M.E. and Obrycki, J.J., Impact of transgenic Bacillus thuringiensis corn and crop phenology on five nontarget arthropods, Environ. Entomol, 34, 1303, 2005.

118. Daly, T. and Buntin, G.D., Effect of Bacillus thuringiensis transgenic corn for lepi-dopteran control on nontarget arthropods, Environ. Entomol, 34, 1292, 2005.

119. Dively, G.P., Impact of transgenic VIP3A x Cry1Ab lepidopteran-resistant field corn on the nontarget arthropod community, Environ. Entomol, 34, 1267, 2005.

120. Bhatti, M.A. et al., Field evaluation of the impact of corn rootworm (Coleoptera: Chrys-omelidae)-protected Bt corn on ground dwelling invertebrates, Environ. Entomol., 34, 1325, 2005.

121. Bhatti, M.A., et al., Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods, Environ. Entomol, 34, 1336, 2005.

122. Bitzer et al., Biodiversity and community structure of epedaphic and euepaphic spring-tails (Collembola) in transgenic rootworm Bt corn, Environ. Entomol., 34, 1346, 2005.

123. Dutton, A., et al., Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Crysoperla carnea, Ecolog. Entomol, 27, 441, 2002.

124. Carpenter, J.B. and Gianessi, L.P., Agricultural Biotechnology: Update Benefit Estimates, National Center for Food and Agricultural Policy, Washington, D.C., 2001.

125. Carter, J., Panic over genetically modified plants completely uncalled for, New York Times, August 26, 1998.

126. Benbrook, C.M., et al., Pest Management at the Crossroads, Consumers Union, Yon-kers, NY, 1996.

127. Marvier, M., Improved risk assessment for nontarget safety of transgenic crops, Ecol. Appl, 12, 1119, 2002.

128. Andow, D.A. and A. Hilbeck, A science-based risk assessment for nontarget effects of transgenic crops, Bioscience, 54, 637, 2004.

129. Sisterson, M.S., et al., Nontarget effects of transgenic insecticidal crops: Implications of source-sink population dynamics, Environ. Entomol., 36, 121, 2007.

130. Schmidt, T.L., Hansen, M.H., and Solomakos, J.A., Indiana's Forests in 1998, Bulletin NC-196, North Central Research Station, USDA Forest Service, St. Paul, MN, 2000.

131. Rich, D., Beware of altered food genes, The Providence Journal, January 21, 2007.

132. Pustai, A., Bardoz, S., and Ewen, S.W.B., Genetically modified foods: Potential effects on human health, in Food Safety: Contaminants and Toxins, D'Mello, J.P.F., Ed., CAB International, London, 2003, chap. 16.

133. Hofte, H. and Whitely, H.R., Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev., 53, 242, 1989.

Fantastic Organic Food Facts

Fantastic Organic Food Facts

Get All The Support And Guidance You Need To Be A Success At Utilizing Organic Foods. This Book Is One Of The Most Valuable Resources In The World When It Comes To Getting The Right Information About Eating Healthy With Organic Food.

Get My Free Ebook


Post a comment