Immediate impacts of tissue culture and micropropagation

Although DNA technologies are beginning to benefit small farmers in developing countries, the immediate impact for many countries, particularly those with low technical capacity, will be in the production and distribution of disease-free and high-quality planting material of the native clones of vegetatively propagated plants. These include banana, plantain, cassava, yams, potato, sweet potato, pineapple, sugarcane; many fruit trees such as apple, pear, plum, date palm, mango, and litchi; and many ornamental shrubs and flowers. The benefits of micropropagation are immediate, and the availability of cheap labor in the developing countries provides a competitive edge in the use of this technology. Micro-propagation of banana and sugarcane has created rural jobs in Cuba and promoted exports of propagules of ornamental plants from India to Europe. Within the last five years, nearly 100 plant micro-propagation companies have been established in India by the private sector. In Cuba, if micro-propagation capacity can be scaled up to satisfy domestic demand, the country can save $15 million (U. S.) annually for expenditure on imported potato seed stock. Cuban cottage industry, based on tissue culture, is providing part-time employment opportunities for rural housewives. In China, micro-propagation of virusfree sweet potato seed in Shandong, which resulted in an average yield increase of at least 30%, gave an internal rate of return at 202% and a net value of $550 million (U. S.) (Fuglie et al, 2001).

Applications of agricultural biotechnology will continue in a dynamic manner in both developed and developing countries, albeit at different paces. It is difficult to foresee the full impact of the technology with regard to agricultural growth and poverty alleviation, as it is contingent both on technology development and on how the technology is integrated into national programs. However, economic studies conducted by FAO indicate that the current trend in biotechnology will only reinforce existing trade patterns in cereal and oil crops unless developing countries take measures to strengthen their technical capability (FAO, 1999). If sustainability is factored in, oil-producing perennial crops such as oil palm may be more advantageous in the long run than annual crops, although there are short-term disadvantages due to the longer time it takes to establish a perennial crop stand. However, it is expected that biotechnology advances will reduce production costs and raise yields, resulting in lower food prices. If developing countries continue to use conventional technology, food prices will remain high in those countries due to higher production costs, reducing their competitiveness in world markets not only with developed countries but also with advanced developing countries that use biotechnology to improve agricultural productivity.

Even if access and use of proprietary technologies are not major constraints, the dissemination of biotechnology products—such as improved seeds to small farmers in developing countries—may be problematic. In many countries, there is a general lack of infrastructure for seed delivery and functional extension services to serve poor farmers. Thought will have to be given not only to technologies but also to proper channels for their delivery to small farmers and to sufficient extension services, market access, and rural infrastructure for proper crop system development.

There is always inherent risk in any technology, old and new. As is the case with conventional insecticides, there are concerns about increases in pest resistance as a result of Bt crops that may result in the loss of Bt as an important pesticide. Such risks can be addressed through scientific-based risk analysis and risk management, including postcommercial monitoring, coupled with proper management of cropping systems. Recent experience with large-scale Bt GM crops in the United States supports this approach. Tabashnik et al. (2000) reported that, contrary to expectations, insect resistance has not been observed in the Bt cotton-growing region in Arizona. Furthermore, results of a seven-year study by the same team of researchers showed that Bt cotton caused long-term suppression of the pink bollworm, Pectinophora gossypiella, a major pest (Tabashnik et al., 2003). While it is critical to monitor post-commercialization and research for effective strategies to delay the buildup of insect resistance to Bt toxins, additional genes for insect resistance beyond Bt genes are being tested and more will be discovered to provide an array of arsenals for protecting crop plants. By combining several different types of insect-resistant genes into one crop, it should be possible to develop crops with more durable insect resistance even in the absence of special management practices.

0 0

Post a comment