Info

0.1 m Diameter drainage pipe

Native soil

FIGURE 28.1 A U.S. Golf Association (USGA) Method green.

0.1 m Diameter drainage pipe

Native soil

FIGURE 28.1 A U.S. Golf Association (USGA) Method green.

For either the USGA Method green or California Method green, rectangular or herringbone patterns are typically used for placement of the drainage pipe system. With the rectangular pattern, the drainage pipe laterals merge with the main conveyance pipe at an angle of 90 degrees. With the herringbone pattern, the drainage pipe laterals merge with the main conveyance pipe at an angle less than 90 degrees. The spacing distance between the drainage pipe laterals within a green is usually between 3 and 5 m (Boniak et al., 2002).

Ground-penetrating radar (GPR) has the potential to provide valuable information on constructed soil layer thicknesses and depths and buried drainage pipe positions within a golf course green environment. However, to date, there has been very little research conducted on golf course applications of GPR. Boniak et al. (2002) tested GPR at two golf course greens in southern Illinois, and were successful in mapping subsurface features (soil layers and drainage pipes) using a system with 400 MHz center frequency antennas. In this same study, a GPR system with 900 MHz center frequency antennas was also tested but without success due to high signal attenuation that was attributed to recent fertilizer application. A feasibility study by Allred et al. (2005) found GPR antenna center frequencies of 250, 500, and 1000 MHz to work equally well for mapping subsurface drainage pipe systems on a golf course tee and two golf course greens. For producing GPR profiles showing constructed soil layer thicknesses and depths and drainage pipe positions, 900 and 1000 MHz center frequency antennas provided the best data (Allred et al., 2005).

Because of the time and effort devoted to the upkeep of greens, detailed information on features beneath a green's surface will undoubtedly be helpful to the golf course superintendents and architects involved with green maintenance and remodeling activities. When original design plans have been lost, which is often the case, or for the purpose of quality control after new construction, a nondestructive technique such as GPR may be the most viable alternative for determining the thicknesses and depths of constructed soil layers or drainage pipe locations within a golf course green environment. Using GPR to its fullest advantage in this regard requires careful attention to computer-processing procedures and the field survey setup. Consequently, this study had two goals: first to determine the appropriate computer-processing procedures for generating GPR profiles or time-slice amplitude maps of golf course greens, and second, to establish the most effective operational setup for collecting GPR data on a golf course green.

Was this article helpful?

0 0
Taming Taxes

Taming Taxes

Get All The Support And Guidance You Need To Permanently Get A Handle On Your Taxes. This Book Is One Of The Most Valuable Resources In The World When It Comes To A Guide To Home Business Taxes.

Get My Free Ebook


Post a comment