Bagged feeds

Instructions can be found in the AOAC Official Methods of Analysis (Padmore, 1990, p. 69). A pointed corer consisting of a single or double tube, or slotted tube and rod, is used to remove a diagonal core from end to end of the horizontal bag. Bulk feeds should have ten or more cores from different regions. The sample should be stored in such a way that deterioration and change in composition are prevented (BS 5766, 1979).

Silage, hay and haylage

A suitable corer is needed to remove sample cores from within clamps and stacks. A motor driven corer is used in some research institutes, but is rare in other establishments. One of the first designed for research work was that of Alexander (1960). His design was just 183 cm in length, and not long enough for the depth of the average farm clamp today. We designed a three-section clamp in stainless steel to resist corrosion by the volatile fatty acids in silage (Faithfull, 1997). This is clipped inside a wooden box and will fit into the boot of a car. Table 1.1 compares the two corers. Construction details are shown in Fig. 1.2.

Table 1.1. Comparison of Alexander pattern and modified design of silage corer.







Assembled length (cm)



Greater depth required

Number of sections



Ease of handling


Mild steel


Avoid corrosion products


contaminating sample

To sample the clamp, make two cuts in the membrane about 3 cm long in the form of a cross. Insert the tommy-bar into the corer, thrust the corer down vertically, and finish with a twisting action. Pull up and thrust down and twist again, repeating until the corer is full. Great care should be taken not to hit the concrete base of the clamp, as this will buckle the cutting edge. A penetration of about 38 cm was needed to fill the 15.7 cm long corer tube because of the greater compaction in the tube. The sample is removed from the tube using the tommy-bar and immediately placed in a labelled grip-top polythene bag. The middle and top bar sections are added to reach greater depths. They are secured with cross-pins held in place with insulation tape.

Sampling positions

Alexander (1960) commented on the distortion of the horizontal layers in the physical structure of the silage clamp (Fig. 1.3), and concluded that the most likely points to be representative of the whole pit would be the mid-points of the half-diagonals (Fig. 1.4). A vertical core through the centre of the clamp would include more of the top layer, which would have wilted longer, than the lower layers. Conversely, a core taken near the edge of the clamp would include relatively more of the lowest, moister layer. A core through the half diagonals would be more representative of each layer, although the optimum position might need to be determined by a more careful examination of the geometry of the clamp.

Grass and herbage species

It is vital that sufficient weight of sample is taken for the planned analyses, extra being added in case further unforeseen tests are required. Plant materials

Fig. 1.2. (a) Stainless still silage corer. Units in mm (and inches (in) when appropriate).

Fig. 1.2. (b) Stainless steel silage corer in wooden carrying case. From the top: file to sharpen cutting edge; tommy bar; bottom section with corer; middle section; top section. (c) Stainless steel silage corer; close-up of bottom end with corer. (d) Stainless steel silage corer; bottom and middle sections. (e) Fully assembled silage corer with metre rule.

Central core

End core biased to biased to top Half-diagonal core is bottom layer layer more representative

Fig. 1.3. Effect of layer structure on sample core bias.

Fig. 1.3. Effect of layer structure on sample core bias.

are high in moisture content, and young growth could lose 85% of its fresh weight after drying (Wilman and Wright, 1978). Contamination by soil should be carefully avoided. In animal nutrition studies, however, ingestion of some soil adhering to forage leaves and stems should be considered as normal for herbivores, and thus be taken into account when assessing the mineral and trace-element status of the forage. It is normal to allow 2 weeks between grazing and sampling to avoid contamination by trampling. Washing foliage should be kept to a minimum to reduce leaching, and large smooth leaves can be wiped with a damp cloth. Atmospheric deposition immediately before sampling should be considered, especially if within 10 miles downwind of a coastal region. An assessment of the degree of contamination can be obtained from the level of titanium in dry matter. If this exceeds 10 pg g-1, it can be considered as contaminated (Berrow, 1988).

Some plant species possess a high moisture content, little structural fibre, and are very delicate. Such a species is chickweed (Stellaria media (L.) Vill.)

with about 91.3% moisture (Derrick et al., 1993). When this is thawed after being stored in a freezer, most of this moisture exudes out and so various soluble components will be lost unless poured back over the foliage before drying. Even before thawing, it forms ice crystals within the polythene sample bag, so these should be added to the sample if freeze-drying.

0 0

Post a comment