Phosphate extractants

Phosphorus occurs in various soil fractions: as soil minerals combined with Ca, Fe, Al, which are of low solubility; bound to particle surfaces of, e.g. sesquioxides, calcite, to Al on humus surfaces; in soil solution; in the organic matter, primarily as esters.

Again, there are several choices of extractant, and the preferred one depends mainly on the type of soil under test. One of the most widely used procedures is the Olsen method (Olsen et al., 1954), which was developed in the USA to correlate crop response to fertilizer on calcareous soils. The amount of P extracted will vary with temperature (increases by 0.43 mg P kg-1 per degree rise between 20°C and 30°C) and shaking speed, so conditions should be standardized. The extractant is 0.5 M sodium bicarbonate adjusted to pH 8.5. The bicarbonate competes with phosphate on the adsorption sites extracts, and removes most, but not all of it, together with some soluble calcium phosphate. Addition of phosphate-free activated carbon before shaking is necessary if coloured soil extracts are obtained, and then they will require filtration.

The northeastern United States have soils where the P chemistry is affected by aluminium phosphates. They therefore use dilute acid extractants to dissolve these minerals and extract the P. They use several procedures: (i) The Mehlich 1 Extraction (dilute double acid extractant) containing 0.0125 M H2SO4 + 0.05 M HCl (Mehlich, 1953). (ii) The Mehlich 3 Extraction using 0.2 M acetic acid + 0.25 M ammonium nitrate + 0.015 M NH4F + 0.013 M nitric acid + 0.001 M EDTA (ethylenediaminetetraacetic acid) (Mehlich, 1984). The pH should be 2.5. (iii) The Morgan Extraction using 0.72 M NaOAc (sodium acetate) + 0.52 M acetic acid at pH 4.8 (Morgan, 1941). (iv) The Modified Morgan Extraction (McIntosh, 1969) using 0.62 M NH4OH + 1.25 M acetic acid at pH 4.8. The resulting extracts are used for the appropriate colorimet-ric reaction and absorbances are measured on a colorimeter or spectropho-tometer, possibly coupled to an autoanalyser.

Note: the Olsen method is not to be confused with the Olson method (Olson et al., 1954), which uses sodium carbonate.

The North Central Region, in addition to the Olsen method, uses the Bray and Kurtz P-1 test for phosphorus (Bray and Kurtz, 1945), which has proved to be well correlated with crop response to phosphate fertilizer on acid to neutral soils in the region. Each state experiment station has developed correlations and calibrations for the particular soil conditions within its own state, so field experience over a number of years or decades is necessary when deciding which methods to adopt. When bringing samples from remote sites back to the laboratory, it is therefore important to assess the nature of the soil at that site in order to choose the optimum method. If the same method has to be used for reasons of comparability, then it is necessary to state that the available phosphorus content was obtained using a particular named method.

Another method used by a few laboratories will be briefly mentioned; that is determination by resin extraction. The latest fertilizer recommendations by MAFF/ADAS (2000) include a classification of soils from the resin P values obtained using the method of Hislop and Cooke (1968). This was developed in the 1960s at the Levington Research Station, Ipswich. The method was intended to reflect the soil phosphate capacity, intensity and kinetic (rate of release) components. It was also designed to avoid inducing any major change in the chemical constitution of the soil as a result of the applied extraction procedure. The anion exchange resin (De Acidite FF 510, particle size >0.5 mm) was considered to be an inert phosphate sink. The method is outlined as follows: a subsample of 20 g air-dry soil, ^2.0 mm, is ground in a Glen Creston Micro Hammer Mill fitted with a 0.5-mm screen. A 2-ml scoop of soil is then transferred to a 6 ounce (170 ml) bottle followed by a 5-ml scoop of washed and dried resin and 100 ml distilled water. It is shaken end-overend for 16 h at 25°C, after which it is filtered through approximately 0.5 mm terylene netting and washed; this retains the resin and allows the soil to pass through. The resin is then transferred to a leaching tube and 50 ml sodium sulphate (70 g l-1) solution is added and the leaching controlled to last 20 min. The phosphate in the leachate is determined colorimetrically, either manually or using an autoanalyser, the method being based on Fogg and Wilkinson (1958). The resin procedure was correlated with the Olsen bicarbonate method and gave a correlation coefficient of 0.877 (significant at P^0.001) for non-calcareous soils, and 0.830 for calcareous soils. The amount of phosphate extracted by the resin during 16 h shaking approaches a maximum, and reflects the quantity or capacity factor which dominates under agricultural conditions. For glasshouse soils, however, full extraction is not approached, and it is rather the intensity and kinetic factors which are reflected more than capacity, and which are considered to be more relevant in this situation.

Others use the resin method of Somasire and Edwards, 1992. The latter involves extracting 5 g soil 1:20 (m/v) using 100 ml of water, 2.8 ml cation exchange resin and 4.0 ml anion exchange resin with shaking for 16 h; this is followed by extraction with 1 M ammonium chloride, pH 2.0, with 30 min shaking.

The above extractants for phosphate have been mainly developed for conventional agriculture. Some methods have been developed for assessment of soils managed on the organic system, which will be discussed in a separate chapter.

Tip: finding soil analysis methods on the web requires a more powerful search engine. Try searching for 'soil test procedures' using http://www. alltheweb.com or http://www.google.co.uk

0 0

Post a comment